General_Relativity

General_Relativity - General Relativity Chapter 8...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
General Relativity Chapter 8
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Introduction GR is Einstein’s theory of gravitation that  builds on the geometric concept of space- time introduced in SR. Is there a more fundamental explanation of  gravity than Newton’s law? GR makes specific predictions of deviations  from Newtonian gravity.
Background image of page 2
Curved space-time Gravitational fields alter the rules of geometry  in space-time producing “curved” space For example the geometry of a simple triangle  on the surface of sphere is different than on a  flat plane (Euclidean) On small regions of a sphere, the geometry is  close to Euclidean
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
How does gravity curve space-time? With no gravity, a ball thrown upward continues upward and the worldline is a straight line. With gravity, the ball’s worldline is curved. It follows this path because the spacetime surface on which it must stay is curved. To fully represent the trajectory, need all 4 space-time dimensions curving into a 5th dimension(!) Hard to visualize, but still possible to measure t t x x No gravity gravity
Background image of page 4
Principle of Equivalence A uniform gravitational field in some direction  is indistinguishable from a uniform  acceleration in the opposite direction Keep in mind that an accelerating frame  introduces pseudo-forces in the direction  opposite to the true acceleration of the frame  (e.g. inside a car when brakes are applied)
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Elevator experiment First, elevator is supported and not moving, but gravity is present. Equate forces on the person to ma (=0 since a=0) •F s - mg = 0 so F s = mg •F s gives the weight of the person. Second, no gravity, but an upward acceleration a. The only force on the person is F s and so •F s = ma or F s = mg if “a” value is the same as “g” Person in elevator cannot tell the difference between gravitational field and accelerating frame Third, there is gravity and the elevator is also in free-fall Fs - mg = -mg or Fs = 0 “Weightless” Let upward forces be positive, thus gravity is -g See also http://www.pbs.org/wgbh/nova/einstein/relativity/
Background image of page 6
Einstein was bothered by what he saw as a dichotomy in the concept of  "mass." On one hand, by Newton's second law ( F=ma ), "mass" is  treated as a measure of an object’s resistance to changes in  movement. This is called  inertial mass . On the other hand, by Newton's  Law of Universal Gravitation, an object's mass measures its response  to gravitational attraction. This is called  gravitational mass . As we will  see, Einstein resolved this dichotomy by putting gravity and  acceleration on an equal footing. The principle of equivalence is really
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/11/2011 for the course AST 3019 taught by Professor Sarajedini during the Spring '08 term at University of Florida.

Page1 / 29

General_Relativity - General Relativity Chapter 8...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online