SomeTestForWienIdent

# SomeTestForWienIdent - sm2 = sm2 + b(1,j)*u(1,t-j+1); % sm2...

This preview shows pages 1–2. Sign up to view the full content.

% Some Tests for Identification of Wiener model. Obtaining the inverse of % the filter. that is obtain inputs from outputs. . %% ------------------------------------------------------------------------ clear all u=normrnd(0,2,1,400); % A white gaussian input sequence u with length %400 0 mean and standard deviation 2 uback = zeros(1,400); ut=normrnd(0,2,1,200); %input for testing. % e=normrnd(0,.2,1,400); % A white gaussian with zero mean and standart de %viation .2 with length 400. it is error term zt =zeros(1,400); a = [2.09 -2.063 1.209 -.4656 .1164 -.02975] ; % ai s b = [1 .8 .3 .4] ; N=200; r=7; m=6; % bi s % now we will get the input output data. The last 200 datapoints will be % used for training % for t = 1:400 if (t==1) z(1,t) = b(1,t)*u(1,1); y(1,t) = z(1,t)^3; % following was before: sinc(z(1,t))*z(1,t)^2 ;% no +e(1,t); % b(1,t)*sinc(u(1,1))*(u(1,1)^2) + e(1,t); end sm1 = 0; for i = 1:t-1 sm1 = sm1 + a(1,i)*z(1,t-i); % sm1 = sm1 + a(1,i)*y(1,t-i); end sm2 = 0; if(t<4) for j = 1:t

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sm2 = sm2 + b(1,j)*u(1,t-j+1); % sm2 = sm2 + b(1,j)*sinc(u(1,t-j+1))*(u(1,t-j+1)^2); end else for i = 1:4 sm2 = sm2 + b(1,i)*u(1,t-i+1); % sm2 = sm2 +b(1,i)*sinc(u(1,t-i+1))*(u(1,t-i+1)^2); end end z(1,t) = sm1 + sm2 ; y(1,t) =z(1,t)^3; % following was before: sinc(z(1,t))*z(1,t)^2; %no + e(1,t); % y(1,t) = sm1+sm2 + e(1,t); end if (t&gt;6) sm1 = 0; for i = 1:6 sm1 = sm1 + a(1,i)*z(1,t-i); % sm1 = sm1 + a(1,i)*y(1,t-i); end sm2 = 0; for i = 1:4 sm2 = sm2 + b(1,i)*u(1,t-i+1); % sm2 = sm2 +b(1,i)*sinc(u(1,t-i+1))*(u(1,t-i+1)^2); end z(1,t) = sm1 + sm2; y(1,t) =z(1,t)^3; % following was before: sinc(z(1,t))*z(1,t)^2; % no + e(1,t); % y(1,t) = sm1 + sm2 + e(1,t); end end %% Do the inverse of all of these processes above. i.e find the inverse of %% the filter. thus obtaining input from output. . % for t =201:400 sm1 = 0; for i = 1:6 sm1 = sm1 + a(1,i)*z(1,t-i); end sm2 = 0; for j = 1:3 sm2 = sm2 + b(1,j+1)*u(1,t-j); end uback(1,t) = z(1,t) - sm1 - sm2; end e %% %...
View Full Document

## SomeTestForWienIdent - sm2 = sm2 + b(1,j)*u(1,t-j+1); % sm2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online