{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mychapter4

mychapter4 - Solving problems by searching 1 CHAPTER 3 CMPT...

This preview shows pages 1–9. Sign up to view the full content.

CHAPTER 3 CMPT 310 - Blind Search 1 Solving problems by searching

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Outline CMPT 310 - Blind Search 2 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms
Environment Type Discussed In this Lecture Static Environment CMPT 310 - Blind Search 3 Fully  Observable Deterministic Sequential yes yes Discrete  Discrete  yes Planning,  heuristic  search yes Control,  cybernetics no no Continuous Function  Optimization Trivial given  performance  measure no yes

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Choice in a Deterministic Known Environment Without uncertainty, choice is trivial in principle:  choose what you know to be the best option. Trivial if the problem is represented in a look-up  table. CMPT 310 - Blind Search 4 Option Value Chocolate 10 Wine 20 Book 15 This is the standard problem representation in decision theory  (economics).
Computational Choice Under Certainty But choice can be  computationally  hard if the  problem information is represented differently. Options may be  structured  and the best option  needs to be constructed. E.g., an option may consist of a path, sequence of actions, plan,  or strategy. The value of options may be given  implicitly  rather  than explicitly. E.g., cost of paths need to be computed from map. CMPT 310 - Blind Search 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Sequential Action Example CMPT 310 - Blind Search 6 Deterministic, fully observable     single-state problem Agent knows exactly which state it will be in; solution is a  sequence Romania   The full map is observed Single-state:  Start in #5. Solution?? [Right, Suck] Vacuum world   everything observed
Problem types CMPT 310 - Blind Search 7 Non-observable    sensorless problem (conformant  problem) Agent may have no idea where it is; solution is a sequence Romania   No map just know operators(cities you can move to) Conformant:   Start in {1, 2, 3, 4, 5, 6, 7, 8} e.g., Right goes to {2, 4, 6, 8}. Solution?? [Right, Suck,Left, Suck] Vacuum world   No sensors

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Problem types CMPT 310 - Blind Search 8 Nondeterministic and/or partially observable     contingency problem percepts provide  new  information about current state Unknown state space     exploration problem Vacuum world   know state of current location Romania   know current location and neighbor cities Contingency: [L,clean]  Start in #5 or #7 Murphy’s Law: Suck can dirty a clean carpet Local sensing: dirt, location only.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern