mychapter4 - Informed search algorithms CHAPTER 4 Oliver...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 4 Oliver Schulte Summer 2011 Informed search algorithms
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Outline Best-first search A *  search Heuristics Local search algorithms Hill-climbing search Simulated annealing search Local beam search
Background image of page 2
Review: Tree search A search strategy is defined by picking the  order of  node expansion Which nodes to check first?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Knowledge and Heuristics Simon and Newell,  Human Problem Solving , 1972. Thinking out loud: experts have strong opinions like  “this looks promising”, “no way this is going to  work”. heuristics  that help  find promising states fast.
Background image of page 4
Best-first search Idea: use an  evaluation function   f(n)  for each node estimate of "desirability" Expand most desirable unexpanded node Implementation : Order the nodes in frontier in decreasing order of  desirability Special cases: greedy best-first search A *  search
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Romania with step costs in km
Background image of page 6
Greedy best-first search Evaluation function  f(n) = h(n)  ( h euristic) = estimate of cost from  n  to  goal e.g.,  h SLD (n)  = straight-line distance from  n  to  Bucharest Greedy best-first search expands the node that  appears  to be closest to goal
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Greedy best-first search example
Background image of page 8
Greedy best-first search example
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Greedy best-first search example
Background image of page 10
Greedy best-first search example http://aispace.org/search/
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Properties of greedy best-first search Complete?  No – can get stuck in loops,  e.g. as Oradea as goal  Iasi   Neamt   Iasi   Neamt    Time?   O(b m ) , but a good heuristic can give dramatic  improvement Space?   O(b m -- keeps all nodes in memory Optimal?  No
Background image of page 12
A *  search Idea: avoid expanding paths that are already  expensive. Very important!
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/04/2011 for the course CMPT 310 taught by Professor Oliver during the Summer '11 term at Simon Fraser.

Page1 / 40

mychapter4 - Informed search algorithms CHAPTER 4 Oliver...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online