{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mychapter4a

# mychapter4a - Local Search CHAPTER 4 Part II Oliver Schulte...

This preview shows pages 1–8. Sign up to view the full content.

CHAPTER 4, Part II Oliver Schulte Summer 2011 Local Search

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Outline Hill-Climbing Gradient Descent 2nd-order methods.
Environment Type Discussed In this Lecture Static Environment CMPT 310 - Blind Search 3 Fully Observable Deterministic Sequential yes yes Discrete Discrete yes Planning, heuristic search yes Control, cybernetics no no Continuous Function Optimization Vector Search: Constraint Satisfaction no yes

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Optimization Problems An optimization problem is of the form maximize f( x ) subject to constraints on  x Equivalently   minimize -f( x ) subject to constraints on  x If the constraints are linear (in)equalities, we have  linear programming  problem.  Very large literature built up over centuries. where x is a vector of values.
AI examples Find the right angle of joints for pancake- flipping robots. Find the best weights for rules for reasoning. Basically, any problem with continuous variables at some point needs optimization to build the best agent.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Example:  n -queens Put  n  queens on an  ×  n  board with no two  queens on the same row, column, or diagonal Demo for n-Queens Hill-Climbing
Hill-climbing search

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 19

mychapter4a - Local Search CHAPTER 4 Part II Oliver Schulte...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online