Lecture 24

Lecture 24 - 1 ECE52 Spring 11 Lecture 24 3/16/11...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 ECE52 Spring 11 Lecture 24 3/16/11 (reordered from past years to get to counters faster) Sequential building blocks Registers Counters 2 3 Counters! Ubiquitous inside computers and other digital systems counting occurrences of events generating timing intervals (initiate an event 7 clockcycles in the future requires a counter) count elapsed time between events loop iterations 4 Using chapter 8 techniques Counter as a FSM a particularly simple FSM! Consider modulo-8 counter cycles through 0- 1-2-3-4-5-6-7-0-1- every time the input w is active. w = w 1 = w = w 1 = w = w 1 = w = w 1 = w = w 1 = w = w 1 = w = w 1 = w = w 1 = A/0 B/1 C/2 D/3 E/4 F/5 G/6 H/7 5 State table for mod-8 counter Present Next state Output state w = 0 w = 1 A A B 0 B B C 1 C C D 2 D D E 3 E E F 4 F F G 5 G G H 6 H H A 7 6 Obvious state assignment for counter Present Next state state w = 0 w = 1 Count y 2 y 1 y 0 Y 2 Y 1 Y 0 Y 2 Y 1 Y 0 z 2 z 1 z 0 A 000 000 001 000 B 001 001 010 001 C 010 010 011 010 D 011 011 100 011 E 100 100 101 100 F 101 101 110 101 G 110 110 111 110 H 111 111 000 111 intiutively make state flip flop values be the output signals directly! 7 Why flip-flop choice matters: Consider D-flip flop implementation 00 01 11 10 00 01 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 11 10 y 1 y 0 wy 2 00 01 11 10 00 01 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 11 10 y 1 y 0 wy 2 00 01 11 10 00 01 0 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 11 10 y 1 y 0 wy 2 Y 2 wy 2 y 0 y 2 y 1 y 2 w + + + y 0 y 1 y 2 = Y 0 wy 0 wy 0 + = Y 1 wy 1 y 1 y 0 wy 0 y 1 + + = 8 D Q Q D Q Q Clock y 0 w y 1 y 2 Y 0 Y 1 Y 2 Resetn D Q Q D flip-flop implementation of mod-8 counter 9 Now consider J-K implementation Present Flip-flop inputs state w = 0 w = 1 Count y 2 y 1 y 0 Y 2 Y 1 Y 0 J 2 K 2 J 1 K 1 J 0 K 0 Y 2 Y 1 Y 0 J 2 K 2 J 1 K 1 J 0 K 0 z 2 z 1 z 0 A 000 000 0d 0d 0d 001 0d 0d 1d 000 B 001 001 0d 0d d0 010 0d 1d d1 001 C 010 010 0d d0 0d 011 0d d0 1d 010 D 011 011 0d d0 d0 100 1d d1 d1 011 E 100 100 d0 0d 0d 101 d0 0d 1d...
View Full Document

This note was uploaded on 07/05/2011 for the course ECE 52 taught by Professor Dr.jonathanboard during the Spring '11 term at Duke.

Page1 / 28

Lecture 24 - 1 ECE52 Spring 11 Lecture 24 3/16/11...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online