{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW4 solution

# HW4 solution - Problem2 From figure P3.28 we can get(1 The...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Problem2: From figure P3.28, we can get (1) The period N = 6. (2) x[0]=1, x[1]=2, x[2]= 1, …., x[6]=1 Therefore, we can obtain a k as follows: 1 0 1 2 [ ]exp( ) 6 1 2 2 [1 2exp( 1) ( 1)exp( 2) 6 6 2 2 0 ( 1)exp( 4) 2exp( 5)] 6 6 1 2 2 {1 2[cos( ) sin( )] ( 1)[cos( ) sin( )] 3 3 3 3 4 4 5 ( 1)[cos( ) sin( )] 2[cos( ) sin 3 3 3 N k n a x n j kn N j k j k N j k j k k j k k j k N k j k k j       5 ( )]} (1) 3 4 2 5 cos( ) ( ),cos( ) ( ) (2) 3 3 3 3 4 2 5 sin( ) sin( ),sin( ) sin( ) (3) 3 3 3 3 (2) (3) (1) g 1 2 [1 4cos( ) 2cos( )] 3 3 k k Notice that k cos k k cos k k k k k take and into then you will et a k k N     and N = 6
Problem3: From Figure P3.29(b): We can obtain 0 1 2 3 4 7 1 1 2, 1, , , 0, ... , 2 2 2 a a a a a a Thus, x[n] can be described as follows. 7 0 2 [ ] exp( ) 8 2 2 1 2 1 2 2 exp( 0 ) 1 exp( 1 ) exp( 2 ) exp( 3 ) 8 8 2 8 4 8 1 2 1 2 2 0 exp( 5 ) exp( 6 ) 1 exp( 7 ) 4 8 2 8 8 1 1 1 2 1 exp( 1 ) exp( 2 ) exp( 3 ) 4 2 4 4 4 1 0 exp 4 k n x n a j kn j n j n j n j n j n j n j n j n j n j n           1 ( 5 ) exp( 6 ) 1 exp( 7 ) 4 2 4 4 1 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}