This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: x*3 pg6x t') 3. Given g(x): ut ,t , x zxJ a) Find limg(x). r+J = I,n'r' Y23 b) Find ]{9,s(") DWEL tl 4. Find tim 3(x +2) x+0.ygx L7 _L *5rL O'' a 5. Find lim Ji *s x+2s x  25 ? l,n; >(ez5 ( f, ot7 ( {* *r ) f,; Y? ?{ ./ {* *f "J, lO c J{r{ ftx*t^J'3(r+L) 6lxl, nJl,7 (2, i. y = tan(O) is discontinuous at 0 = r /2 . e,/>, x2 is discontinuous at x :2 . Is this an infinite, ajump, discontinuity? (t+3) \/ z "tX y = "]: is discontinuous? If so, name them. " e'*e' yt.Y 6. Given f (x):3x' . a. Write an expression for .f (x + h). .f (x+h).f(x) L l h 'r (xl:u b. Find lim h+0 t t l,u L"+ a dAj *3, l, "^ hsv zva = 3N + txlI l,& jump, or removable discontinuity? P"g 'l1 )T x +x6 lt  _ tAre there any values of x such that Yk e^( oY=) en =" gq\o \:/,r' X a=Xtt 12...
View
Full Document
 Spring '11
 astina
 Math, lim, Mathematical analysis, Continuous function, Classification of discontinuities, viable graph

Click to edit the document details