This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Ov\ of; WD ‘HQN‘V: Quclx wohlom lQNw‘l’lN llPl‘S. mth 261 Test # 2
Name : This test is closed book. You may use your calculator ‘ 1. Use the shortcut formula to ﬁnd the inverse of the 2 x 2 matrix. Kw WWW + l 2. Consider the matrix in
II 82
01 (3.) Find the elementary matrices E1 and E2 such‘that EgElA = I. ‘ two ‘60 \ lo ,
Audi EBA“ °\1(:Dt \[Ol ' / (b) Write A‘1 as a product of two elementary matrices. , ~l
GK 6‘ At t MWY‘S GiEl f: A A": [‘fleC'l ,
amt [mil1‘ [W‘l] £251“ (c) Write A as a product of two elementary matrices. (1;ng : :1: means A t E: 9431:. afﬁx Acuﬂf‘éfl Mel 3. Determine whether the collection 8 is a subspace of the R3. You must show work
that justiﬁes your answer. 331
8 is the collection of all vectors of the form x = [ 0 ] Where 173 = —a:1 .
373 CKng We qeﬂulfQMini o£ a SullKPAl/e‘ 0 ‘ ‘ ‘ X tOz—o :‘X
(A\ “V1930 \jgg‘l’or _ [cg/1 13 m9 imce E  NM. A .
gtMe x3: ~cu. : 'M J Cox GS, \lllljﬁ 4W2 CJMlCl‘NMS Sa‘llY‘ClQé/ S l8 m$ul03p4ce 6? {R3, 3 ~ 4. State a basis for the nullspace of the matrix. You'must show work that justiﬁes your answer. K1“R\ ‘ I  3 O Rf‘d’kz
*3 O I —l 5 O ‘ %
Kg'LWq O _4 Lf ‘10 0
l o 1 CF 0
k\'f:’% 0 ‘ “ I; U
o O 0 O 0'
(sum) X+0*1%*qw:o go
‘I '% +W=O
~Zs~¢t
NC VUAUSPK(C Q/‘O‘M S'gf :
S t : vkaM mg a (M633 2 3 4 0
5. For the matrix, ‘ A = I14 2 1 0532 state the following. Give justiﬁcation for your results. dim<muzimm)~ A2
rank (A) , and nullity (A)
 \\1‘i [42“! ‘~{2I
RH“ RyP. _ (242
““3 i 4 1 I ﬂ 0 5 0 6k L51 0 50 1
0 5 3 1 O 5 ? 1 O 030 T‘e chm/Acme rehiim cams we 4"" (oiMMV'i is A Cw“ (0,140;me of WC 09AM CDCUMVIS Cmti ‘Hf‘C girﬁ‘i‘ 3 Coiumm 4f? Qv/i \ tqsptmm/mfgh) :3. TM ”Amtﬁxm «Lou? Shes 3 2A rgws fLuj
{(MKUXBZK ' 1kg Vtév’cf. Quwx ““0“ (0W3 I {We Varialgicij WAS nul'i‘iy (A):i\ 5 6. Use tho GaussJordan Method on [AI] to ﬁnd the inverse of the following. Do by
hand and show work. 1‘3 \00 Rvpl \oo‘ put»
a \3 o l 0 ﬂ 0 \ '3 o ‘ O
'2. 1L} 00\ ngl 1 Q ( 04 I
\ O U 1 'V‘ 0
R341“ 0 \ 3 o ‘ ‘0
g O O ‘ v1 ‘ \
(15393 ‘ o U ‘ g. L?)
_\ ‘ 4 0
We \AVQYSQ Main 1 {g A j 6 ’2'; I?
‘2 \ 7. Let T : R2 —> R2 be the Linear transformation which rotates R2 counterclockwise
around the origin by 60°. State the standard matrix for T. 6476) [T1 1'. C05 C00 “Siv‘ 600
“(70° 0:60”
L J3
/ 2 2
% é
qup _
L ~33 L? 5 ‘333
TH“ )‘ 1 I j l
’ ‘8'
" 5% i 4 L13 +1
—o.°)64l0
1‘:
63%} 8. Consider the linear transformation T : R3—>R3 givenby,
1:1 2 V 0
M) “i HWH
(173 1 ‘ 1 State the standard matrix for the linear transformation. RurNW‘j) T67): Oxwoxl *2X] ‘3 M mix
I) [\D Q
‘L *4)“. *1X} MUK‘E'F‘PCM‘Pi‘M ﬁvm ‘ 9. For the matrix 5 1
A — [ 2 4 J .
ﬁnd all of its eigenvalues. Show every step of the process. _ \WMX) M [T A] : Mammal « q1~qa~lovl : XL—MM?) v T @— GWV 3\ ”(\Q QlﬁQV‘VAlmQS are, ﬁlté ’11:}. Find the corresponding eigenvectors of the eigenvalues. Show all your steps. 3‘36 ‘l l 0/] “l \ O 'X‘VVTO
. [1“). b A O 00 <0) 73X
" l
M Wewvu‘ws we WNW €C€p¢m<[ D
l
3n.“ 3 1 01:1“)] Ma“ Q,( ax, : o
’l .
l O O o 0 30 ‘/:’1X “G‘C QiﬁEw VC CloYé QIG 3N0,“ by E? :5Pqn([vl2]) 9 ...
View
Full Document
 Spring '11
 astina
 Math

Click to edit the document details