321_09_slides2

# 321_09_slides2 - Week 1 Review Econ 321 Introduction to...

This preview shows pages 1–14. Sign up to view the full content.

Week 1 Review Econ 321  Introduction to Econometrics Econ 321-Stéphanie Lluis 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Outline Causality Main steps in statistical analysis Econ 321-Stéphanie Lluis 2
Causality Econ 321 - Stéphanie Lluis 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Correlation versus Causality Correlation: Two economic variables are  correlated if they move together. Causality: Two economic variables are  causally related if the movement of one  causes movement of the other. Econ 321 - Stéphanie Lluis 4
Correlation versus Causality Q: Which one do we need? • A: Depends on the context: – To test the theoretical predictions, we  need causality. (Ex: to estimate the impact  of subsidized daycare on the labour  market supply of single mothers.) – In order to forecast the future value of an  economic variable, correlation is sufficient. Econ 321-Stéphanie Lluis 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Correlation versus Causality It is crucial to realize the difference  between causality and correlation. Examples: – More police officers (A) in high crime  areas (B) – My grandmother’s arthritis (A) and rain  (B) – Taking SAT preparation course (A)  and SAT scores (B) Econ 321-Stéphanie Lluis 6
Correlation vs. Causality Assume you found that event A is  correlated with event B  A is causing B B is causing A Some third factor is causing both Econ 321-Stéphanie Lluis 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Why Isn’t Correlation alone  enough? Econ 321 - Stéphanie Lluis 8
Conditions for Causality Econ 321 - Stéphanie Lluis 9

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
How do we Establish Causality? Randomized experiment Statistical models Econ 321 - Stéphanie Lluis 10
Ideal Case: Randomized Trials Typical example: How do new medical  treatments affect the health of medical  patients?  Example: the impact of sleeping pills on  patients suffering insomnia Econ 321-Stéphanie Lluis 11

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Ideal Case: Randomized Trials Randomized trial – Given a group of volunteers,  randomly  assign some of them to the  control  group  and some to the  treatment  group –  Treatment group: the set of  individuals who  are subject to an  intervention being studied  –  Control group: the set of  individuals  comparable to the  treatment group who are not subject to  Econ 321-Stéphanie Lluis 12
Ideal Case: Randomized Trials Randomized trial-Insomnia Example  Given a group of volunteer insomnia patients,  randomly assign some of them to the

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern