Chapter 1 - I LAPLACE TRANSFORM Contents 1 Definition of LT 2 1.1 Definition 2 1.2 Existence 3 1.3 Laplace Transform of Periodic Functions 4 1.4

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: I LAPLACE TRANSFORM Contents 1 Definition of LT 2 1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Laplace Transform of Periodic Functions . . . . . . . . . . . . . . . . . . . . 4 1.4 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 DIFFERENTIATION, INTEGRATION AND LAPLACE TRANSFORM 6 2.1 LT of the derivative of a function . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 LT of the integral of a function . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 The Derivative of LT of a Function . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 The Integral of LT of a Function . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 SHIFTING THEOREMS 14 3.1 The First Shifting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The Second Shifting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 CONVOLUTION AND THE DIRAC DELTA DISTRIBUTION 17 4.1 Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Dirac delta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1 1 Definition of LT 1.1 Definition The Laplace Transform is widely used in engineering applications, such as solving linear ordinary differential equations. It transforms the equation in ”t-space” to one in ”s-space”. This makes the problem much easier to solve. Let f ( t ) be a function defined on [0 , ∞ ). We may assume f ( t ) = 0 when t < 0. The Laplace transform (LT) of f ( t ) is the function F ( s ), defined by: F ( s ) = L { f ( t ) } = ∫ ∞ e − st f ( t ) dt. This is named for Pierre-Simon Laplace, one of the best French mathematicians in the mid-to-late 18th century.The LT transforms functions of t to functions of another variable s . If F ( s ) is the Laplace transform of f ( t ), then f ( t ) is the inverse Laplace transform of F ( s ): f ( t ) = L − 1 { F ( s ) } . Property 1 The LT and L − 1 are linear : L { af ( t ) + bg ( t ) } = aL { f ( t ) } ( s ) + bL { g ( t ) } L − 1 { aF ( s ) + bG ( s ) } = aL − 1 { F ( s ) } + bL − 1 { G ( s ) } 2 Examples of Laplace Transforms f ( t ) for t ≥ L ( f ) 1 1 s e at 1 s- a t n n ! s n +1 ( n = 0 , 1 ,... ) sin at a s 2 + a 2 cos at s s 2 + a 2 For example, L { 1 } = ∫ ∞ e − st dt = {- 1 s e − st } ∞ = 1 s L { e at } = ∫ ∞ e ( a − s ) t dt = {- 1 s- a e ( a − s ) t } ∞ = 1 s- a 1.2 Existence For which functions f is the LT actually defined on? We want the indefinite integral to converge, of course. A function f ( t ) is piecewise continuous on a finite interval [ a,b ] if [ a,b ] can be subdivided into a finite number of subintervals such that f is continuous in each of the subintervals, and it approaches a finite limit when t approaches an end of any of the subintervals. Function f is piecewise continuous on an infinite interval if it is piecewise continuous on any finite...
View Full Document

This note was uploaded on 07/11/2011 for the course ECE 45 taught by Professor Lee during the Spring '08 term at Alfred University.

Page1 / 20

Chapter 1 - I LAPLACE TRANSFORM Contents 1 Definition of LT 2 1.1 Definition 2 1.2 Existence 3 1.3 Laplace Transform of Periodic Functions 4 1.4

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online