hw1fa02 - COT3100C-01, Fall 2002 S. Lang Assignment #1 (40...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
COT3100C-01, Fall 2002 Assigned: 8/27/2002 S. Lang Assignment #1 (40 pts.) Due: 9/5 in class by 8:45 am Instructions: Write your answer neatly and concisely. All proofs need to be justified step by step by using the appropriate definitions, theorems, and logical reasoning. Illegible scribbles or unclear logic will result in minimum credit . 1. (16 pts.) Recall the following definitions and theorems about integers: Definition . An integer a is even if a = 2 b for some integer b . (That is, there exists an integer b such that a = 2 b .) Definition . An integer a is odd if a = 2 b + 1 for some integer b . (That is, there exists an integer b such that a = 2 b + 1.) Definition . An integer a is a divisor of integer b , denoted a | b , if a 0 and there exists integer c such that b = ac . Theorem. Each integer is either even or odd (but not both). Theorem. The sum of two odd integers is even. Theorem.
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online