{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# quiz3_key - COT 3100 Summer 2001 Quiz#3(Solutions 1 If...

This preview shows page 1. Sign up to view the full content.

COT 3100 Summer 2001 Quiz #3 (Solutions) 06/21/2001 1. If {{ a , c , e }, { b , d , f }} is a partition of the set A = { a , b , c , d , e , f }, determine the corresponding equivalence relation R . For the relation that corresponds to the given partition, we have A / R ={{ a , c , e }, { b , d , f }}, so there are two equivalence classes: [ a ] R = { a , c , e }, and [ b ] R = { b , d , f }. Using the definition of equivalence classes and properties of equivalence relations we can find: R = {( a , a ), ( b , b ), ( c , c ), ( d , d ), ( e , e ), ( f , f ), ( a , c ), ( a , e ), ( c , e ), ( c , a ), ( e , a ), ( e , c ), ( b , d ), ( b , f ), ( d , f ), ( d , b ), ( f , b ), ( f , d )} 2. Consider the following relation R on the set A = {1, 2, 3, 4}: R = {(1, 2), (2, 3), (3, 1), (4, 1)} Find the transitive closure of this relation. We can find all pairs of elements in
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}