{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# COT6410 - Computability Theory and Complexity Theory COT...

This preview shows pages 1–13. Sign up to view the full content.

Computability Theory and Complexity Theory COT 6410

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Computability Theory The study of what can/cannot be done via purely mechanical means. Complexity Theory The study of what can/cannot be done well via purely mechanical means.
What is it that we are talking about? Solving problems algorithmically!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
A Problem: Set of input data items (set of input "instances") A set of rules or relationships between data and other values A question to be answered or set of values to be obtained
{ Examples: Search a list for a key, SubsetSum, Graph Coloring }

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Each instance has an  'answer .' An instance’s answer is the solution of the  instance - it is  not  the solution of the problem. A solution of the problem is a computational  procedure that finds the answer of any instance  given to it - an  'algorithm .'
A Procedure (or Program): A finite set of operations (statements) such that Each statement is formed from a predetermined finite set of symbols and is constrained by some set of language syntax rules. The current state of the machine model is finitely presentable. The semantic rules of the language specify the effects of the operations on the machine’s state and

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
An Algorithm: A procedure that Correctly solves any instance of a given problem. Completes execution in a finite number of steps no matter what input it receives.
{ Example algorithm: Linearly search a finite list for a key; If key is found, answer “Yes”; If key is not found, answer “No”; } { Example procedure: Linearly search a finite list for a key; If key is found, answer “Yes”; If key is not found, try this strategy again; }

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Procedures versus Algorithms Looking back at our approaches to “find a key in a finite  list,” we see that the algorithm always halts and always  reports the correct answer. In contrast, the procedure does  not halt in some cases, but never lies.  What this illustrates is the essential distinction between  an algorithm and a procedure – algorithms always halt in  some finite number of steps, whereas procedures may run  forever on certain inputs. A particularly silly procedure that
Notion of "Solvable" A problem is  solvable  if there exists an algorithm that  solves it (provides the correct answer for each instance).  The fact that a problem is solvable or, equivalently,  decidable  does not mean it is  solved . To be solved, someone  must have actually produced a correct algorithm. The  distinction between solvable and solved is subtle. Solvable is  an innate property – an unsolvable problem can never  become solved, but a solvable one may or may not be solved

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Computability vs Complexity Computability focuses on the distinction between  solvable and unsolvable problems, providing tools that may
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}