Exam 1 - 1 Exam 1Equations gi = Vi Vj (Gij cos(i j ) + Bij...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Exam 1Equations POWER FLOW EQUATIONS FORMULATION Admittance Matrix Y bus = G + jB = Y ij Power fow equations P i = f i ( δ ,V )= V i n ° j =1 V j ( G ij cos( δ i δ j )+ B ij sin( δ i δ j )) Q i = g i ( δ ,V )= V i n ° j =1 V j ( G ij sin( δ i δ j ) B ij cos( δ i δ j )) NUMERICAL ITERATION General ±orm update = old value + iteration matrix*error x ( k +1) = x ( k ) + A 1 [ y f ( x ( k ) )] Gauss A = diag { a i } Newton-Raphson A = J = jacobian =[ ∂f i ∂x j ] | x ( k ) GAUSS-SEIDEL ITERATION V i ( k +1) = V i ( k ) + Y ii 1 S i V i ( k ) i 1 ° j =1 Y ij V j ( k +1) + ... ... Y ii 1 n ° j = i Y ij V j ( k ) Notes: 1) At slack bus simply calculate S after solution found. 2) At PV bus, calculate Q from most recent voltage and angle updates; and update only the voltage angle. NEWTON-RAPHSON LOAD FLOW Jacobian i ° = j ∂f i ∂δ j = V i V j ( G ij sin( δ i δ j ) B ij cos( δ i δ j )) V j ∂f i ∂V j = V i V j ( G ij cos( δ i δ j )+ B ij sin( δ i δ j )) ∂g i ∂δ j = V i V j ( G ij cos( δ i δ j )+ B ij
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

Exam 1 - 1 Exam 1Equations gi = Vi Vj (Gij cos(i j ) + Bij...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online