Midterm2-PracticeSolutions

# Midterm2-PracticeSolutions - PRACTICE MIDTERM EXAM 2 SPRING...

This preview shows pages 1–5. Sign up to view the full content.

PRACTICE MIDTERM EXAM 2 SPRING 2011 1. Swing Equation Swing Equationt:     .. 60 0.5 3 me e f PP H P  Pre-fault: 2 0.2 0.8 2 0.6 eq t L X X X pu 1.1 1.0 sin 1.83 sin ee eq eq E V E V XX     .. 3  00 15.83 o During-fault: 0.4 0.33 0.8 eq VV  ; ' 0.47 X ' ' 1.1 0.52 0.7 e EV P X   .. 0.52 sin 3 Post-fault: ' 1 eq t L X X X

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
' ' 1.1 1.0 sin 1.1sin 1 e eq EV P X   .. 60 0.5 3   0 11 27.04
2. Transient Stability Pre_fault& Post_fault P epre = P epost = | E a || V | X eq sin δ X eq = 0 . 2 + 0 . 8 = 1 pu P epre = P epost = 1 . 15 × 1 1 sinδ = 1 . 15 sinδ power angle: P epre = P epost = P m 0 . 6 = 1 . 15 × sinδ 0 δ 0 = 0 . 55 rad = 31 . 45 δ max = π - δ 0 = π - 0 . 55 = 2 . 59 rad P_fault P e = 0 ˆ δ cc δ 0 ( P m - P efault ) = ˆ δ max δ cc ( P epost - P m ) ˆ δ cc 0 . 55 (0 . 6 - 0) = ˆ 2 . 59 δ cc (1 . 15 sinδ - P m ) 0 . 6 × ( δ cc - 0 . 55) = - 1 . 15 cosδ | 2 . 59 δ cc - 0 . 6 × (2 . 59 - δ cc ) 0 . 6 × (2 . 59 - 0 . 55) = - 1 . 15 cos 2 . 59 + 1 . 15 cosδ cc 0 . 24 = 1 . 15 cosδ cc δ cc = 1 . 36 rad = 77 . 95 ¨ δ = πf H ( P m - P efault ) ¨ δ = πf H ( P m - 0) δ ( t ) = 1 2 πf H P m t 2 + δ 0 δ cc = 1 2 πf H P m t 2 cc + δ 0 t cc = s ( δ cc - δ 0 ) × 2 H πfP m t cc = r (1 . 36 - 0 . 55) × 2 × 2 π × 60 × 0 . 6 = 0 . 169 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. Synchronous Machine Modeling a)
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 07/14/2011 for the course ECE 522 taught by Professor Tomsovic during the Summer '10 term at University of Florida.

### Page1 / 9

Midterm2-PracticeSolutions - PRACTICE MIDTERM EXAM 2 SPRING...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online