{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

m251_problem_set1[sp11]

# m251_problem_set1[sp11] - MATH 251.4/5/6 Problem set#1 Due...

This preview shows pages 1–2. Sign up to view the full content.

MATH 251.4/5/6 Problem set #1 Due: 4-7-2011 1. Find the general solution of (a) y (6) - 5 y (4) - 36 y ″ = 0 (b) y (6) - 2 y (4) + y ″ = 0 2. Find the Laplace transform of (a) u π/4 ( t ) e 3 t cos t . (b) u 2 ( t ) ( t 3 t + 4) (c) δ ( t – 3) t 2 cos( πt ) 3. Find the Laplace transform of (a) e -5 t sin(2 t ) cos(2 t ). (b) 6sin(8 t ) sin(2 t ) 4. Find the inverse Laplace transform of each given function: (a) F ( s ) = e - s (7 - 3 s ) / ( s 2 - 8 s + 20) (b) F ( s ) = 5 e -3 s s / ( s 4 - 16) (c) F ( s ) = e s / ( s 3 + 9 s ) 5. Use the method of Laplace transform to solve the following 1st order linear IVP. y ′ + 6 y = e -5 t + u 8 ( t ), y (0) = 3 6. Use the method of Laplace transform to solve the following 3rd order linear IVP. y ″′ - y ″ - 2 y ′ = 0, y (0) = 0, y ′(0) = 1, y ″(0) = 5 7. Find the general solution for each system. Then classify the type and stability of the critical point at (0,0). (a) x ′ = - 3 0 4 2 x . (b) x ′ = 4 2 0 4 x . (c) x ′ = - 1 1 4 1 x . (d) x ′ = - - 6 8 5 6 x .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

m251_problem_set1[sp11] - MATH 251.4/5/6 Problem set#1 Due...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online