KohTest - end e for epoch=1:500 for i=1:100...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
% %Kohonen Self Organizing Test % function [inds,success]= KohTest(Ts) f load ('E:\Program Files\MATLAB\R2006a\work\Neural Network\MiniProject3\nnp1.mat'); l Tsn=.1*Ts; %normalized test set T %since we know the cluster patterns we may choose the initial weights as %the cluster centers. That is: alfa0=.01; alfa=.7; tau=5; t Wk=zeros(10,100); S=y(1:100,:); Sn=.1*S; %normalized S k=1; ind=zeros(100,1); VNet=zeros(10,100); %To initailize weight matrix we are just trying to find the cluster center %of each pattern class. for i=1:10 for j=1:10 Wk(i,:)=Wk(i,:)+S(:,k)'; k=k+1; end end Wk=.1*Wk; % so we found the cluster center. a=1; %To normalize weight matrix. for i=1:10 Wk(i,:)=Wk(i,:)/norm(Wk(i,:));
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: end e for epoch=1:500 for i=1:100 VNet(:,i)=Wk*S(:,i); [win(i,1),ind(i,1)]=max(VNet(:,i)); if(i==100) Wk(ind(i,1),:)=Wk(ind(i,1),:); else %ind(i+1,1)=ind(i,1)+1; %Updating weights Wk(ind(i,1),:)=Wk(ind(i,1),:)+(alfa0+alfa*exp(-epoch/tau))*(Sn(:,i)'-Wk(ind(i,1),:)); end Wk(ind(i,1),:)=Wk(ind(i,1),:)/norm(Wk(ind(i,1),:)); %Normalizing weights end end e for epoch=1:1000 for i=1:100 VNet(:,i)=Wk*Ts(:,i); [win(i,1),ind(i,1)]=max(VNet(:,i)); end end e winner=1; basari=0; for i=1:10 for j=1:10 if (ind(winner,1)==i) basari=basari+1; end winner=winner+1; end end e inds=ind; success=basari;...
View Full Document

Page1 / 2

KohTest - end e for epoch=1:500 for i=1:100...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online