tutorial4sol

tutorial4sol - TUTORIAL 4 WEEK 5 ECON3107/ECON5106...

This preview shows pages 1–2. Sign up to view the full content.

TUTORIAL 4– WEEK 5 ECON3107/ECON5106 – Economics of Finance ANSWERS 1. (i) The Q matrix derived from the elemental payment combinations B0, S0, Bg, Sg, Bb, Sb is as follows: Q = 1 . 1 1 . 5 - 1 - 1 0 0 1 . 1 0 . 8 0 0 - 1 - 1 0 0 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 0 0 0 0 0 0 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 The corresponding securities price vector is p S = ( 1 1 0 0 0 0 ) . (ii) The Q matrix derived from the elemental payment combinations B0, S0, Bb, Sb, B02, S02 is as follows: Q = 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 - 1 - 1 0 0 0 0 0 0 1 . 21 2 . 25 0 0 0 0 1 . 21 1 . 20 0 0 1 . 1 1 . 5 1 . 21 1 . 20 0 0 1 . 1 0 . 8 1 . 21 0 . 64 The corresponding securities price vector is p S = ( 1 1 0 0 1 1 ) . (iii) The atomic security price vector can be derived from either Q matrix and its corresponding p S vector: p atom = p S · Q - 1 = ( 0 . 389 61 0 . 519 48 0 . 151 80 0 . 202 40 0 . 202 40 0 . 269 86 ) (iv) Using the elemental payment combinations from part (i) we get: n = Q - 1 c = 1 . 1 1 . 5 - 1 - 1 0 0 1 . 1 0 . 8 0 0 - 1 - 1 0 0 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 0 0 0 0 0 0 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 - 1 0 10 20 20 30 40 = 63 . 839 - 34 . 694 18 . 182 0 46 . 753 - 14 . 286 Using the elemental payment combinations from part (ii) we get: n = Q - 1 c = 1 . 1 1 . 5 0 0 0 0 1 . 1 0 . 8 - 1 - 1 0 0 0 0 0 0 1 . 21 2 . 25 0 0 0 0 1 . 21 1 . 20 0 0 1 . 1 1 . 5 1 . 21 1 . 20 0 0 1 . 1 0 . 8 1 . 21 0 . 64 - 1 0 10 20 20 30 40 = 47 . 310 - 34 . 694 28 . 571 - 14 . 286 16 . 529 0 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern