Friedberg Solutions

Friedberg Solutions - LINEAR ALGEBRA 4th STEPHEN...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
LINEAR ALGEBRA 4th STEPHEN H.FRIEDBERG, ARNOLD J.INSEL, LAWRENCE E.SPENCE Exercises Of Chapter 1-4 http : //math.pusan.ac.kr/cafe home/chuh/
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Contents § 1. Vector Spaces. ............................................... 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4. Linear Combinations and Systems of Linear Equations . . . . . . 19 1.5. Linear Dependence and Linear Independence . . . . . . . . . . . . 24 1.6. Bases and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7. Maximal Linearly Independent Subsets . . . . . . . . . . . . . . . 50 § 2. Linear Transformations and Matrices . ....................... 55 2.1. Linear Transformations, Null Spaces, and Ranges . . . . . . . . . 55 2.2. The matrix representation of a linear transformation . . . . . . . 77 2.3. Composition of Linear Transformations and Matrix Multiplication 87 2.4. Invertibility and Isomorphisms . . . . . . . . . . . . . . . . . . . . 101 2.5. The change of Coordinate Matrix . . . . . . . . . . . . . . . . . . 116 2.6. Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 2.7. Homogeneous Linear Differential Equations with Constant Coeffi- cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 § 3. Elementary Matrix Operations and Systems of Linear Equa- tions. ........................................................ 154 3.1. Elementary Matrix Operations and Elementary Matrices . . . . . 154 3.2. The Rank of a Matrix and Matrix Inverse . . . . . . . . . . . . . 162 3.3. Systems of Linear equations - Theoretical aspects . . . . . . . . . 172 3.4. Systems of Linear equations - Computational aspects . . . . . . . 178
Background image of page 2
§ 4. Determinants . ............................................... 188 4.1. Determinants of Order 2 . . . . . . . . . . . . . . . . . . . . . . . 188 4.2. Determinants of Order n . . . . . . . . . . . . . . . . . . . . . . . 192 4.3. Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . 198 4.4. Summary-Important Facts about Determinants . . . . . . . . . . 213 4.5. A characterization of the Determinants . . . . . . . . . . . . . . . 215
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1.1. § 1. Vector Spaces 1.1. Introduction 1 . Only the pairs in (b) and (c) are parallel (a) x = (3 , 1 , 2) and y = (6 , 4 , 2) @ 0 6 = t R s.t. y = tx (b) (9 , - 3 , - 21) = 3( - 3 , 1 , 7) (c) (5 , - 6 , 7) = - 1( - 5 , 6 , - 7) (d) x = (2 , 0 , - 5) and y = (5 , 0 , - 2) @ 0 6 = t R s.t. y = tx 2 . (a) x = (3 , - 2 , 4) + t ( - 8 , 9 , - 3) (b) x = (2 , 4 , 0) + t ( - 5 , - 10 , 0) (c) x = (3 , 7 , 2) + t (0 , 0 , - 10) (d) x = ( - 2 , - 1 , 5) + t (5 , 10 , 2) 3 . (a) x = (2 , - 5 , - 1) + s ( - 2 , 9 , 7) + t ( - 5 , 12 , 2) (b) x = ( - 8 , 2 , 0) + s (9 , 1 , 0) + t (14 , - 7 , 0) (c) x = (3 , - 6 , 7) + s ( - 5 , 6 , - 11) + t (2 , - 3 , - 9) (d) x = (1 , 1 , 1) + s (4 , 4 , 4) + t ( - 7 , 3 , 1) 1 PNU-MATH
Background image of page 4
1.1. 4 . x = ( a 1 ,a 2 , ··· ,a n ) R n , i = 1 , 2 , ··· ,n 0 = (0 , 0 , ··· , 0) R n s.t. x + 0 = x, x R n 5 . x = ( a 1 ,a 2 ) tx = t ( a 1 ,a 2 ) = ( ta 1 ,ta 2 ) 6 . A + B = ( a + c,b + d ) , M = ( a + c 2 , b + d 2 ) 7 . C = ( v - u ) + ( w - u ) + u = v + w - u --→ OD + 1 2 --→ DB = -→ OA + 1 2 -→ AC i.e. w + 1 2 ( v - w ) = 1 2 ( v + w ) = u + 1 2 ( v + w - u - u ) v hO¡S¢P iO£S¤P t d XT] v k h i j t V W X XT^ 2 PNU-MATH
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1.2. 1.2. Vector Spaces 1 . (a) T (b) F (If 0 0 s.t. x + 0 0 = x, x V, then 0 0 = 0 + 0 0 = 0 0 + 0 = 0 , 0 0 = 0) (c) F (If x = 0 ,a 6 = b , then a · 0 = b · 0 but a 6 = b ) (d) F (If a = 0 ,x 6 = y , then a · x = 0 = a · y but x 6 = y ) (e) T (f) F (An m × n matrix has m rows and n cilumns) (g) F (h) F (If f ( x ) = ax + b,g ( x ) = - ax + b , then deg f =deg g =1, deg( f + g )=0) (i) T (p.10 Example4) (j) T (k) T (p.9 Example3) 2 . 0 0 0 0 0 0 0 0 0 0 0 0 3 . M 13 = 3 , M 21 = 4 , M 22 = 5 4 . (a) ± 6 3 2 - 4 3 9 3 PNU-MATH
Background image of page 6
1.2. (b) 1 - 1 3 - 5 3 8 (c) ± 8 20 - 12 4 0 28 (d) 30 - 20 - 15 10 - 5 40 (e) 2 x 4 + x 3 + 2 x 2 - 2 x + 10 (f) - x 3 + 7 x 2 + 16 (g) 10 x 7 - 30 x 4 + 40 x 2 - 15 x (h) 3 x 5 - 6 x 3 + 12 x + 6 5 . U = 8 3 1 3 0 0 3 0 0 , D = 9 1 4 3 0 0 1 1 0 , T = 17 4 5 6 0 0 4 1 0 ( * ) The total number of crossings Fall Spring Winter Brook trout 17 4 5 Rainbow trout 6 0 0 Brown trout 4 1 0 6 .
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/16/2011 for the course ECON 001 taught by Professor Ana during the Spring '11 term at Allen SC.

Page1 / 225

Friedberg Solutions - LINEAR ALGEBRA 4th STEPHEN...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online