{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Midterm 1 Solution

# Midterm 1 Solution - ACTSC 432/832 Midterm#1 Suggested...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ACTSC 432/832 Midterm #1 Suggested Answer Spring 2011 1(a) 7r(1) = 7d?) = 71(3) Conditional distributions of X2 for each urn: 0.652 0.4225, 9: = 2 fxﬂemi) = 2(0.65)(0.35) : 0.455, 1- = 3 0.352 01225, a.- = 4 0.52 0.25. :5- : 2 fx,le(x|2) = 2(0.5)(0.5) = 0.5, :1: = 3 0.52 0.25. 11' = 4 0.3‘2 0.09, 1‘ = 2 fx2,e(.1-|3) = 2(0.3)(0.7) = 0.42, 1' = 3 0.72 0.49. w = 4 Conditional distributions of X 1for each urn: 0.653 0.274625, 95' = 3 3(0.652)(0.35) 0.443625, :5 = 4 le'eml) Z 3(0.65)(0.352) = 0.238875, 11' = 5 0.353 0.042875, :1: = 6 0.53 0.125, 2: 2 3 , 3(0.52)(0.5) 0.375, :1: = 4 fx,le(rv|2) : 3(0.5)(0.52) : {0.375. .7: = 5 0.53 0.125, :1: = 6 0.33 0.027, .5- : 3 . 3 0.32) 0.7) 0.189, 2: z 4 11.195113): 3i0.3)((() 7‘2) : {0.441, :r. = 5 0.73 0.343. 1’ = 6 0.65 + 2(0. 5) 1.35. 0 :1 (b) 11(6) 2 0.5 —— 2(0.5) = {1.5, (2‘ = 2 0.3 —— 2(0.7) 1.7, 6 = 3 0.65 —— 22(035) ~— 1.35‘2 0.2275, 6 = 1 5(0) = 0.5 + 22(0.5)—1.52 = 0.25, 0 = 2 0.3 + 22(07) —1.72 0.21, 0 = 3 (c) welxl(1|5) : (WWW???) : 0.226449 7191X1(2|5) = mm = 0.355492 _ 0.441(1/3) _ nelxl(3|5) _ m _ 0.418059 ((0 fx,.x,(2}5) : 0.4225(0226449)+0.25(0.355492)+0.09(0.418059) = 0.222173 fX2|X1(3|5) : 0.455(0226449) + 0.5(0.355492) + 0.42(0.418059) = 0.456365 fX2|X1(4|5) = 0.1225(0.226449)+0.25(O.355492)+0.49(0.418059) : 0.321402 (e) E(X2|X1 = 5) = 2(0222173) + 3(0456365) + 4(0.321462) = 3.099289 (f) 11: E[11(@)] = (1.35 +1.5 +1.7)(1/3) = 4.55/3 2 1.516667 0 = 1510(9)] = (0.2275 + 0.25 + 0.211(1/3) = 0.6875/3 = 0.229167 a : Va7-[/1(@)] = (1.352 +1.52 + 1.72)(1/3) « 112 2 0185/32 = 0.020556 A _ ~ __ 0.6875/3 _ k _ g _ 0185/3 _ 11.148649 Z = 3—43} = 0.212034 Credibility premium = 2[Z.'"E + (1 — Zm] : 2[0.212034(5/3) + O.787966(4.55/3)} = 3.096944 J 2\/— 2 . (1 J Let t 2 1/117, then 1514 2 Hand (11') = 2tdt, thus E([email protected]— k 0)_ 0 210°" [-2m_1€_9t2l1dl : 6 [:0 [line—913(1) _ 1(2m+1) fox awozme 9' dt : [‘(2m+1) I‘ 2m+1 9-” M(9)—P(3)/192 = 2/“92 4(0) = E<X2|e = 0) — {140112 = Pom/04 — 4/04 = 20/04 _ ﬁxen—ra 49/11 ‘ (b) E((—) 1): 5° LW‘L—dﬁ “’3 rm_ 7H)foo/3—o+10; 1 1 8—9/0 @- H“"l‘(a—1‘) [‘(Cx)2 () Na— r) _ Fm) #:2E(9 2): [35(a-——)12)(a z _ —4 20 ’U— 20E(® ): 83((1— l)( (x—2)(a-3)((1—4) (c) a = 130149112} — 142 = 13149-41— 112 ﬁ 4 4 _ 134((1—1)(r11—-2)(0—3)((1—4) __ 133(u—1)7(a—2)2 _ 4 1 . _ “ 53(01— 1)7(a— 211m —'3“)(a— 4)[(“ l)(“ _ 2) " (9' “ .3)((1 _ 4)} —/j (a 1) (a 41277711413 0_ “We? 3a+2)—(a2—7a+12)} _ 40— 10 2(1— 5 * (a— 1101— 2;“: 5(0— 1)(a—2)U k~E—55(Q— l)(a— 2) '_ u _ 2(2u—5) _ -('2)('2 —5) M 2 (2 -5) ((1) Z- _ n+k n(2)(2Qn—5)+5CZu—1)(r1—2) — 211(20— 531+ Sia— 1)(a— '2) _ 271(20— 5) 5(n—1)(a 2) PC :Zi+(1 Z)/.L 211(2a— 1)+.’1Zr2— liin— 2 2:1 2(1-1)+5i(1— 1 0—2 {7((1— 12 (1—2) _ 211(20— ,1):E+10ﬁ“2 _ ’2IL(2(1—5)+5((!—1)((!—2) (I (e) f(x1)— °° 0_C #49 _ 0 2m ' Na) 2 412° '00 . —(l+ )6 — warm) 10 00" H m d6 2 (a) E(X.,;”|(-‘) : 0) = j;;’°.1'3"f(17j|0)da;j= “60.,”‘9‘ ———\f—F7(laj : 9 0° arm—\$4701”? »’ ([éL'J' _ 13'” F(a+1) 30 (73+\/1'_J')o 01+ 008 —(zr+m) ”do zmﬂa) (%+\/av—j)“+1 0 PM“) I = 0/3“" 2m(j§+m)a+l (f) As a function of 0, Wins) oc {H f(1'j|9)}7r(6) 71 cc {H 08—9m}6“_le_% i=1 : 60+n—le-(71;+Z;1=1 mm and so 7r(6|a:) is again a gamma pdf, but with a reaplaced by (1* = (J: + 77, andﬂby621/(%+Zy_1\/E—T). (g) It follows from (Eb) and (f) that E(X71+1(IX):fQOCE(X7L+1lO—_ 0) )7T(9IX)d9 __ 2 _ “7+2: 2 —f0°°.( )H9le9=m—mhﬁﬁi7) (h) It follows from ((-3) and (f) that f( \$7L+1|f13): lief (-Tn+1I0)’/T (M10 Oﬁ: 0,. :ZJ—ccnué—I +m)n.+1 _ (-L“+")(B+Z}”=1 ﬂ?)u+u Zmoﬁzggl «37+ WWW 3. Let total claim experience: X17 . . . , X"; number of claims: N1, . . . , N”; and size of a claim: Y American credibility factors Based on number of claims: Z: 777777(,/— '—’\ 1), therefore 0.752 = M /\0 Au '4 ‘ - . u _ 'IL\ 2_ u\ Based on total claims. Z _ mum IW’I ), therefore () 5 _m -n-'2 'lheref‘me, +2 “'7 —,“L— 1— — 1.25 Buhlmunn c7edib7lity factors Based on number of claims: k = g = V%%, _ ._ I: A 4_ _ 2 Z— n+k— 0.6 therefOIe ——L(-/l\—= 6’1"“ 577, Based on total claims: k: : 5 = W21 __ :72 +1L2E[/\] E__[____A] __ My \ (17(A)_ _(_§Z + 1)Von'.( \) = (1.25+1)§n—%—ny and therefore 2the Buhlmann crediblity factor based on total claims is _ 7L Z _ W _ g 41.4 ...
View Full Document

{[ snackBarMessage ]}