Section 3.10 - Notes for Day : . : Forced Mechanica...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Notes for Day : . : Forced Mechanica Vibrations In section . , we talked about the action of a weight on a spring, which we modeled with the equation: my + y + ky = (Recall the middle term is gamma y prime; the gamma and the y look very similar.) In this model, the oscillations of the spring were induced solely by the initial conditions on the system: the weight on the spring is pulled away and released, for example. If there is an external force acting on the weight over time, we say that the system exhibits forced vibration . e mathematical model for a system exhibiting forced vibration is my + y + ky = g ( t ) , the nonhomogeneous version of the equation from section . . Section . describes forced vibrations in detail, but were going to restrict our attention to four simple cases: Case : y + ky = F cos ( t ) or y + ky = F sin ( t ) ....
View Full Document

This note was uploaded on 04/05/2008 for the course MATH 2214 taught by Professor Edesturler during the Spring '06 term at Virginia Tech.

Page1 / 5

Section 3.10 - Notes for Day : . : Forced Mechanica...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online