# 4.3 - 1 Differentiate#18(5pts f(x)=(1lnx/x^2 f(x)=(1lnx/x...

This preview shows pages 1–3. Sign up to view the full content.

1 ) Differentiate #18 (5pts)   f'(x) = (1 - lnx) / x^2   f'(x) = (1 - lnx) / x   f'(x) = (x - lnx) / x^2   f'(x) = (x - lnx) / x 2 ) Differentiate #28. (5pts)   h'(x) = [-xe^(-x) - 2e^(-x)] / x^3   h'(x) = [-xe^(-x) - 2e^(-x)] / x^2   h'(x) = [-xe^(-x) - 2e^(-x)] / x   h'(x) = [-xe^(-x) - 2e^(-x)] / x^4 3 ) Differentiate #4. (5pts)   f'(x) = [xe^x - 1]/x   f'(x) = [xe^x - e^x]/x^2   f'(x) = [xe^x - e^x]/x   f'(x) = [xe^x - 1]/x^2 4 ) Differentiate #32 (5pts)   f'(s) = e^s/s   f'(s) = e^s + se^s   f'(s) = se^s

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
f'(s) = e^s + e^s/s 5 ) Differentiate #20. (5pts)   f'(x) = e^xlnx + e^x/x   f'(x) = e^x/x   f'(x) = lnx + e^x/x   f'(x) = e^xlnx + 1/x 6 ) Find the minimum and maximum points over the given interval for  #36. (5pts)   Minimum: (1, e^-1) Maximum: (0,1), (2,1)
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 07/22/2011 for the course MATH 2143 taught by Professor Smart during the Spring '11 term at ASU.

### Page1 / 4

4.3 - 1 Differentiate#18(5pts f(x)=(1lnx/x^2 f(x)=(1lnx/x...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online