ch4 exam

# ch4 exam - 1 Differentiate#12(5pts f(x)=1/x f(x)=ln2 1/x...

This preview shows pages 1–3. Sign up to view the full content.

1 ) Differentiate #12 (5pts)   f'(x) = 1/x   f'(x) = ln2 + 1/x   f'(x) = 2/x   f'(x) = ln2 + 2/x 2 ) Differentiate #8. (5pts)   f'(x) = e^(-x^2) - 2xe^(-x^2)   f'(x) = e^(-x^2)   f'(x) = 2xe^(-x^2)   f'(x) = e^(-2x) 3 ) Find the minimum and maximum points over the given interval for  #36. (5pts)   Minimum: (0,1), (2,1) Maximum: (1, e^-1)   Minimum: (1, e^-1) Maximum: (2,1)   Minimum: (1, e^-1) Maximum: (0,1)   Minimum: (1, e^-1) Maximum: (0,1), (2,1) 4 ) Differentiate #2. (5pts)   f'(x) = 12e^(4x+1)   f'(x) = 4e^(4x+1)   f'(x) = 12e^(4)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
f'(x) = 3e^(4) 5 ) Differentiate #6. (5pts)   f'(x) = (2x + 2)e^(x^2+2x-1)   f'(x) = e^(x^2+2x-1)   f'(x) = e^(2x+2)   f'(x) = (2x + 2)e^(2x+2) Answer : Corre ct Points: 5 6 ) Differentiate #24. (5pts)   F'(x) = (6x^2 - 5) / (2x^3 - 5x +1)   F'(x) = ln(6x^2 - 5) / (2x^3 - 5x + 1)   F'(x) = 1/(2x^3 - 5x +1)   F'(x) = ln(6x^2 - 5) Answer : Corre ct Points: 5 7 ) Find the second derivative of #48. (5pts)   g''(t) = e^(-t) [-x^2 - 4x]
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 07/22/2011 for the course MATH 2143 taught by Professor Smart during the Spring '11 term at ASU.

### Page1 / 8

ch4 exam - 1 Differentiate#12(5pts f(x)=1/x f(x)=ln2 1/x...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online