ch4 exam2

ch4 exam2 - 1) Differentiate#8.(5pts) f'(x)=e^(x^2)...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1 ) Differentiate #8. (5pts)   f'(x) = e^(-x^2)   f'(x) = 2xe^(-x^2)   f'(x) = e^(-2x)   f'(x) = e^(-x^2) - 2xe^(-x^2) Answer : Corre ct Points: 5 2 ) Differentiate #12 (5pts)   f'(x) = ln2 + 1/x   f'(x) = ln2 + 2/x   f'(x) = 1/x   f'(x) = 2/x Answer : Corre ct Points: 5 3 ) Find the minimum and maximum points over the given interval for  #38. (5pts)   Minimum: (.5, -.943) Maximum: (2, -1.227)   Minimum: (.5, -.943) Maximum: (1, -1)   Minimum: (1, -1) Maximum: (2, -1.227)   Minimum: (2, -1.227) Maximum: (.5, -.943) 4 )
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Differentiate #26. (5pts)   g'(u) = ln(3) / (u^2-1)   g'(u) = 3/(u^2-1)   g'(u) = 6u/(u^2-1)   g'(u) = ln(6u) / (u^2-1) Answer : Corre ct Points: 5 5 ) Differentiate #6. (5pts)   f'(x) = e^(2x+2)   f'(x) = (2x + 2)e^(x^2+2x-1)   f'(x) = (2x + 2)e^(2x+2)   f'(x) = e^(x^2+2x-1) Answer : Corre ct Points: 5 6 ) Differentiate #18 (5pts)   f'(x) = (1 - lnx) / x   f'(x) = (1 - lnx) / x^2  
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 07/22/2011 for the course MATH 2143 taught by Professor Smart during the Spring '11 term at ASU.

Page1 / 7

ch4 exam2 - 1) Differentiate#8.(5pts) f'(x)=e^(x^2)...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online