test-3-plus-solns

# test-3-plus-solns - ‘ M4039 (+) Spring 2010 Test3 Name...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ‘ M4039 (+) Spring 2010 Test3 Name SOL-“TM”: 1. Test the given series for convergence or divergence using the limit comparison test: so Z n2+4n+l : 2 an n7“ I ml) of: l 2 : ‘2 ; 5—? an- nz+9h+1 N m )7 wish M5, “2:; ,, Mb '7 V\ +1 h ‘ ' ">1. m ‘ CDhUt’u‘ ext by Hié 'p—fﬂ/‘Ia’J 75¢ (f -5 \ Eh IS 3 S ’l‘t m K; . an ’ i p “ ﬁlm ’5: A game" W7 +1, 1 y 1 I’m—.900 I + d ‘ Z‘ ”Z(’+"/n+ 14%”; =xm “‘4 142] “1 mm W9 iii/W7 yx 00 (>0 ML 6 m CI‘ACC “AZ/by) CWWeSJ “Zea” can (ft/S (y [Am/tit,“ CMpa/szim T667? 4 1 36+):2 , l 1 \Césc‘i’ ' ( '3'1'“ \ 11. Find a power series representation of f (x) = and determine its Interval of Convergence. ‘ 3’6 °° 2 In x '4 2 ___I__ C¢I§ 3 36 A 5a V‘ 'Tkis S'BVMS i5 GEOmETVZlC balm +~ ~><2~ Cam mm m to r _. .32— ~?;[41 <3) §<1é=> x2434 ik/Aé é> —é 4x49 W i 7744 30.6.15 (-4.54) Page 2 (+) 111. Recall that e" = 2 ix" is the MacLaurin Series for f(x) = e* . xsgt x = -z W mamer correct to three (3) decimal places. Er n or E s If [MM-he QWF ‘ Approximate e ‘1 (1) Show all your calculations for best chances for partial credit, and (2) show in your Work how we can tell that your approximation approximates e " correct to three decimal places. Solution: e‘1 = a; - ,J, , l , l , 0, “ bm’h! . 54-4,-5'20’0Jr0134A 0006. _, I _ L0,é00§c I 57’W—ggqo 2b. 006’43 - h ‘ ﬁaf‘. Sngfhm [Erin/4.5444"! ‘ Ezra/L 5’57"”? ’ By 114 [ill-lyr’m‘fka {fr/r: V’l-qpl— mil—+1. 10,35 Vary“- Sé céo'éﬁéa‘634'laH’éﬂéa: 1 a 9 2‘! 12¢? '7‘" \$76 7-0363 row—,le 4:, 3&6CIM pleas, Al °° l H °‘° n e 2: Z [—1) 1—, SHJ LM 1410 “:0 m «0 (k) " l< ' 1 IV. Let f(x) = 2x5+14. "T‘ (K) s (ally-1g; W a ‘5 M 14:0 ll .’ ' .. 3 A. Determine the 3’d-degree Taylor Polynomial centered at a = 1 for f (x) = 2x5 + 14 . 1 I /-—-'; Note: f’(x) = 10x4, f"(x) = 40x3, f(3)(x) = 120x2, and f(“)(x) = 240x -. '5 /5 10/0): )0 , P1302401 {ﬁnfl}: 110. T(:/6 0 I0 4a_2_’32__3' 3X) J'A'i‘ﬁﬂt’lﬁ‘f“ 2-?“(X131L3KZX/J, not) = /é + [0 (w: 1+ 201x437"; 20 (WI) B. Use Taylor's Inequality to estimate the accuracy of the approximation 73(x) z f (x) when x lies in the interval 0.9 _<_ x s 1.1. W3 lw—IIéOJ ¢>szl "7 1. v! y ' Page 3 (+) 90 ~ n n [1 °° —1 — .. .. V. Considerthe following power series: 2 an 2 Z M . - E. 6‘4 [7C a) 5.8 "=‘ H‘l 14:! 4:2 (1) This power series is a power series centered at a = g . ‘j . . . an+l (2) Determine the expressron in simpliﬁed form : a n+1 an l'x—Zl 4&1)! 2?. ﬁg? (4) Determine the Interval of Convergence of this series. 1 9 Tugcvfts CMWL365' aésAuﬁ‘t-fg 92' “3‘2, .’ -94y—249—=§-—24’X<é2 J4 - I“, in am: we mm“ with 4:» cmwimg “6:19; 1:”) J— ):pw X's-2" Z (‘0 (‘E—23 g 2 6‘” r. z :5 M 'Zavg/L‘ h, VN 4} V‘“ m 9'” “<1 ht! * ' + we who“ Mg 53 P -Se'ﬂmngﬁl IHAiZMO/UIC Page 4 ,(+) Zn ’X n! z (>0 M 0° 0‘ ) J— (xz) : VI Recall“ e’ = 2 ix" . g0 8 3 h! i ' "=0 n! J V‘ f 0 i n: D Z: 00 Determine a power series representation for the given indeﬁnite integral and give the Radius of Convergence : Z r r (a X __ V1 @Finf‘l'w"!+€ x e » 2’ch n+1 Wet @w Wm : (saw we VII. Let z = f (x, y) : 3:2 ye” be given as a function of 2 variables. .. 2 “st A on, mm)" CM, \ r (9! a e I, an A. Determine g and g ‘ ‘F a ) 5‘ I I ax ay m 1%» mm M: (um/3"» uvwv' ...
View Full Document

## This note was uploaded on 07/25/2011 for the course CC 306 taught by Professor Doig during the Spring '06 term at University of Texas at Austin.

### Page1 / 5

test-3-plus-solns - ‘ M4039 (+) Spring 2010 Test3 Name...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online