{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

CIandTestingSummary

# CIandTestingSummary - ≤-t α,n-1 F=Bernoulli(p Same...

This preview shows pages 1–2. Sign up to view the full content.

Confidence Intervals Spring 2009 Statistics 428 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Test Procedures Distribution Test Statistic Hypothesis p-value Rej. Reg. F=N(μ, σ 2 ), Known σ 2 H 0 : μ = μ 0 H a : μ μ 0 {z: |z| z * α /2 } H 0 : μ μ 0 H a : μ > μ 0 {z: z z * α } H 0 : μ μ 0 H a : μ < μ 0 {z: z -z * α } H 0 : μ = μ 0 2 P(T |t|) {t: |t| t * } F=N(μ, σ 2 ), Unknown σ 2 H a : μ μ 0 α /2,n-1 H 0 : μ μ 0 H a : μ > μ 0 P(T t) {t: t t * α ,n-1 } H 0 : μ μ 0 H a : μ < μ 0 P(T t) {t: t -t * α ,n-1 } F=Bernoulli(p)
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ≤-t * α ,n-1 } F=Bernoulli(p) Same procedure as F=N(μ, σ 2 ), Known σ 2 , but conclusions are made at an approximate significance α . X Use Computer or Table A1 F Unknown, n large (CLT) Same procedure as F=N(μ, σ 2 ),Unknown σ 2 , but conclusions are made at an approximate significance α ....
View Full Document

{[ snackBarMessage ]}