Q2_1130 - MATH 415.01 QUIZ 2A Jan 20, 2010 SHOW ALL YOUR...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 415.01 QUIZ 2A Jan 20, 2010 SHOW ALL YOUR WORK! GOOD LUCK! NAME: 1. (6.5 pts.) Find the solution of the given initial value problem in explicit form. Then,determine the interval in which the solution is defined. 1%. 5 \<k«-za)¢$_hwv “1" H723 ’ 1 3+6?” Xl'tc— “W”? l-C' ‘30): l L ’l-x\ ’ 2* C 1 1 a ._._ - , )g .. i C- 2— ‘,»‘33 \‘lj *\: y Thm§ 2"“ W I 1 ‘, , u L4 : x-L V L w w Mai/x "+4. 1L3 Lawns-l ¢9L4 j 3 : ,\ 4 x1... 'LQL *‘fi‘tlz 33,2.- f } -_ 4 ‘1 A u, .\ x2“ .. ll 1 ()PUC. ‘lQ e is) » ; . . :5. = "l + \lxt'9/ .3 2. (6 pts.) State where in the ty-plane the hypotheses of Theorem 2.4.4 18 sati fied in 3' (—1 y! = d‘_ _ ” l 1 / D: (51”)‘1‘3 > 1 7: balm—ems ave/bwm fl : ’ (ll 41' 319/2 -'L:> b L V0 14.4”- 210 NA. L—l’131>’9 yL 5 -\3 :) @Al'Am’D‘A '- "" K 41 «Ly/2, re +1431. 4.4, 33> mi; JQL'eAr'l “a” “93% arde— gflmfih‘éz MATH 415.01 QUIZ 2B Jan 20, 2010 SHOW ALL YOUR WORK! GOOD LUCK! NAME: 1. (6.5 pts.) A ball with mass .15 kg is thrown upward with initial velocity 20 m/ sec from the roof of a building 30 m high. Neglect air resistance. Find the maXimum height above the ground that ball reaches. AV _..5 Wm v(s\._2_0 =2. Wrw 334’ .. xvi) 9: T 1 "‘ g D \j ’2 ‘1 ' in": \ ‘= A I an I a 1 -——-’v :- 0‘ ’ W\i" jl 0““ 3?” 5 E é} :3 % Vat-O Q l‘\ " ~ r - 1 \ 29331 :53 JV 0 5' \‘in 9 (204%)" Tia—vi ’ \\ ' i‘4- ‘C " T. :3: L—.———/ z/‘gL-h : 20“ ' *4” W?) . 1 r r -,7 ‘ ‘. a. ‘ . WEE} w in ‘2 L..- ,_ V k I 430' - 3° + foe _ ao‘D J“? ""T 7:31 , 35g C35 +107 :50.W 2. (6 pts.) Verify that both y1 =?— t and y2 = —t2/4 are solutions of the initial value problem a“ % ,_ —t+ (t2 +431)”2 y 2 , 31(2) = -1 Then, explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Theorem 2.4.2. £W>¥Ac2 Ofi a Saleo'x (LA; ASL. "‘13. VafiJQCAQZ‘aSS/j (faa ‘0 £— QERgflS‘afi‘ 0" {has}: 4‘3 can’it‘l’V‘J-‘j J «f “ii-1 — . i 0 ’ » l’Of «Navy/.459 ' we”, @nl‘fim": x9771 é‘JZ/éw \4 M V 12 7 ( 7ALl/L 3 L I ? \'/ 7’ walk a. A t 3“ L; 21=l'+ vi. 7 'ri' %(41+A(i-4’\l L - f: : 2. v 2 a! - /—___________ - a! = 4 2.— ; ‘i 9—9-— _—_—-\ , r // Vanilla; $L=-«l1[h 7 ‘ (£14,; 41 '1: —L V ‘0 L I 2.1- "7 31!: ‘ a I) Z W!“ L 91 :12... ’ a. 7— 5 -V v "L 3‘ l i _ 7 D U", .—— The Aeash-L anlrfmhcl “Afi’pruéb. 0550-6» i: : g, +15) ‘4 ' PM. :3 ...
View Full Document

This note was uploaded on 07/26/2011 for the course MATH 415 taught by Professor Costin during the Spring '07 term at Ohio State.

Page1 / 2

Q2_1130 - MATH 415.01 QUIZ 2A Jan 20, 2010 SHOW ALL YOUR...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online