Q5_130 - Math 415 Quiz 5A Assuming the functions y1 and y2...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 415 Quiz 5A Assuming the functions y 1 and y 2 are linearly independent solutions of y 00 + p ( t ) y 0 + q ( t ) y = 0 and that y 3 = y 1 + y 2 and y 4 = y 1 - y 2 , show that y 3 and y 4 also form a linearly independent set of solutions. We know that the Wronskian of y 1 and y 2 , W ( y 1 ,y 2 )( t ) is nonzero on the interval on which the solution is guaranteed to exist. So let’s consider the Wronskian of y 3 and y 4 . W ( y 3 ,y 4 ) = ± ± ± ± ± y 1 + y 2 y 1 - y 2 y 0 1 + y 0 2 y 0 1 - y 0 2 ± ± ± ± ± = ( y 1 + y 2 )( y 0 1 - y 0 2 ) - ( y 1 - y 2 )( y 0 1 + y 0 2 ) = ( y 1 y 0 1 - y 1 y 0 2 + y 2 y 0 1 - y 2 y 0 2 ) - ( y 1 y 0 1 + y 1 y 0 2 - y 2 y 0 1 - y 2 y 0 2 ) = - 2 y 1 y 0 2 + 2 y 2 y 0 1 = - 2 W ( y 1 ,y 2 ) 6 = 0 Hence, y 3 and y 4 are linearly independent. Find the solution of the initial value problem: y 00 - 4 y 0 + 8 y = 0 , y ( π/ 2) = 0 , y 0 ( π/ 2) = - 2 . Describe its behavior as t increases. The characteristic equation is r 2 - 4 r + 8, which has roots r = 2 ± 2 i . So the general solution is y ( t ) = C 1 e 2 t cos(2 t )+ C 2 e
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

Q5_130 - Math 415 Quiz 5A Assuming the functions y1 and y2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online