Q8A_130 - Math 415 Quiz 8A Given the heat conduction...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 415 Quiz 8A Given the heat conduction equation in two space dimensions, 2 ( u xx + u yy ) = u t , and assuming that u ( x,y,t ) = X ( x ) Y ( y ) T ( t ), find ordinary differential equations satisfied by X ( x ), Y ( y ), and T ( t ). Plugging u = XY T into the differential equation gives us 2 ( X 00 Y T + XY 00 T ) = XY T , and noting that the left hand side has T as a factor, we can separate the equation as X 00 Y + XY 00 XY = T 2 T . The left side of this equation does not depend on t at all, and the right side depends only on t , so we can let both sides equal a constant,- , and we immediately have t s differential equation: T + 2 T = 0. There are a few equivalent ways to continue with the equation X 00 Y + XY 00 =- XY , one of which is to write this as X 00 X =- Y 00- Y Y = , where, we have set both sides equal to a constant for the usual reason that we have two functions dependent on different variables which are always equal to each other. This gives us the differential equationson different variables which are always equal to each other....
View Full Document

This note was uploaded on 07/26/2011 for the course MATH 415 taught by Professor Costin during the Spring '07 term at Ohio State.

Page1 / 2

Q8A_130 - Math 415 Quiz 8A Given the heat conduction...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online