Slides-10 - Click to edit Master subtitle style...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Click to edit Master subtitle style ECON1203/ECON2292 Business and Economic Statistics Week 10 Week 10 topics l Simple linear regression l Method of least squares l Basic assumptions of regression model l Inference & explanatory power l Key references l Keller Chapter 16 and 13.1 22 Recall (end of) week 2 lectures l Introduced problem of fitting a line of best fit to a bivariate scatter of points l Example used was Keller ex.2.88 l Hours of Internet use modelled as a function of Education 33 20 25 30 Simple regression l Have ( Y i, X i) pairs for i = 1, … , n l Obtain line of best fit by minimizing residual sum of squares (ordinary least squares) l Produces estimates of intercept & slope in the linear regression relationship Y i = β 0 + β 1 X i + ε i l Sign of slope coefficient is same sign as covariance (& correlation) between Y i & X i 44 55 Simple regression… 66 Numerical versus statistical properties l Ordinary least squares (OLS) can be viewed as curve fitting l Provides a description of multivariate data l But we also want to make inferences about parameters of the population regression function l How can we use b 1 to make inferences about β 1? l What are the properties of b 1 as an estimator of β 1? l Will also want to use regression models to make predictions or forecasts l If a company increases advertising expenditure what is the predicted impact on sales? l What is the confidence interval for that prediction? 77 Some basics l Terminology l Y i is the dependent variable l X i is the independent or explanatory variable l ε i is the disturbance or error term l β 0 & β 1 parameters to be estimated Some basics… l Population regression relationship is Y i = β 0 + β 1 X i + ε i l Links the (X,Y) pairs via the unknown parameters and the unobserved errors l OLS produces Y i = b 0 + b 1 X i + ei l The predicted regression relationship links the (X,Y) pairs via estimated parameters and calculated residuals 88 99 Some basics… l Disturbance term ε i plays a crucial role in regression l Distinguishes regression models from deterministic functions l Represents factors other than X i that affect Y i l Regression treats these other factors as unobserved l β 1 is the marginal effect of X i on Y i holding these other factors constant l Reliable estimates of β 1 will require assumptions restricting the relationship between...
View Full Document

This note was uploaded on 07/28/2011 for the course ECON 1203 taught by Professor Denzilgfiebig during the Three '11 term at University of New South Wales.

Page1 / 31

Slides-10 - Click to edit Master subtitle style...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online