lecture8 - Pattern Classication Examples Spam detection 6...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
e62: lecture 8 11/10/10 Pattern Classifcation 1 e62: lecture 8 11/10/10 Examples Spam detection Face recognition Medical diagnosis 2 0 3 6 what ... Nigeria wire funds ... email data sample label photo 1 photo 2 data sample label e62: lecture 8 11/10/10 Hyperplanes 3 S = { z | x T z = α } where x ∈± N , α x S S x α x T x x e62: lecture 8 11/10/10 A hyperplane defnes two hal± spaces Goal Positive samples in frst hal± space Negative samples in second hal± space nothing on the boundary Linear Separation o± Data 4 x { z | x T z α } and { z | x T z α }
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
e62: lecture 8 11/10/10 Linear Program for Separable Data Data Positive samples Negative samples Linear program What if the data is inseparable? 5 u 1 , . . . , u M ∈± N v 1 , . . . , v K N min 0 s . t . - x T u m + α +1 0 m =1 ,...,M x T v k - α 0 k ,...,K “violations” (if positive) e62: lecture 8 11/10/10 Inseparable Data Minimize number of misclassiFcations? NP-complete Heuristic approximation Violations: Minimize sum of violations 6 max(0 , - x T u
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

lecture8 - Pattern Classication Examples Spam detection 6...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online