lecture16

# lecture16 - Complementary Slackness Labor Allocation:...

This preview shows pages 1–2. Sign up to view the full content.

e62: lecture 16 10/11/10 Complementary Slackness 1 max cx s . t . Ax b x 0 min yb s . t . yA c y 0 Complementary Slackness Theorem Let x and y be feasible. x and y are optimal iff y ( b ! Ax ) = 0 and ( yA ! c ) x = 0 x * ,y * optimal ( y * A - c ) x * + y * ( b - Ax * )= y * b - cx * =0 y * ( b - Ax * ) = 0 ( y * A - c ) x * ( yA - c ) x y ( b - Ax ) = 0 yb - cx =( yA - c ) x + y ( b - Ax )=0 x, y optimal e62: lecture 16 10/11/10 Labor Allocation: Example 2 E1 E2 E3 A1 A2 M1 T1 T2 energy 1.5 1 2 -0.2 -0.1 -0.5 -0.3 -0.2 agriculture -0.2 -0.4 -0.3 0.5 1 -0.5 -0.1 -0.2 manufacturing -0.1 -0.3 -0.6 -0.1 0 2 0 -0.1 transportation -1.2 -0.8 -0.6 -0.8 -1.5 -0.5 4 5 technologies industries How to allocate labor to meet demand? Production matrix: quantities produced/consumed per unit labor energy agriculture manufacturing transportation e62: lecture 16 10/11/10 Solutions 3 E1 E2 E3 A1 A2 M1 T1 T2 energy 1.5 1 2 -0.2 -0.1 -0.5 -0.3 -0.2 agriculture -0.2 -0.4 -0.3 0.5 1 -0.5 -0.1 -0.2 manufacturing -0.1 -0.3 -0.6 -0.1 0 2 0 -0.1 transportation -1.2 -0.8 -0.6 -0.8 -1.5 -0.5 4 5 technologies b = 3 4 6 2 x * = 0 . 0000 0 . 0000 3 . 2835 0 . 0000 7 . 7747 4 . 1622 0 . 0000 3 . 5427 b =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 07/29/2011 for the course MS&E 111 at Stanford.

### Page1 / 2

lecture16 - Complementary Slackness Labor Allocation:...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online