102_solutions8

102_solutions8 - MATH 102 SOLUTIONS TO HW #8 Section 4.4,...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 102 SOLUTIONS TO HW #8 Section 4.4, problem 6. A simple example of this is the matrix: A = 1 . A quick calculation shows that p A ( ) = | I- A | = 2 , so that = 0 is the only eigenvalue of A . However, if one performs the row operation { Row 1 } + { Row 2 } { Row 2 } then we are left with the matrix: B = 1 1 . We have that p B ( ) = ( - 1), so that B has eigenvalues = 0 , 1. Notice that the eigenvalue = 0 persisted in the above row operation (i.e. from A to B ). This is because the eigenvectors of = 0 are clearly the null-space of A or B . And the null-space of a matrix is not changed by row operations. Section 5.1, problem 10. a) Here is a simple example of this. Consider the matrices: A = 1 1 , B = 1- 1 . These have the characteristic polynomials p A ( ) = 2- 1 and p B ( ) = 2 + 1. Thus A has eigenvalues = 1, and B has eigenvalues = i ....
View Full Document

This note was uploaded on 08/02/2011 for the course MATH 102 taught by Professor Szypowsk during the Fall '08 term at UCSD.

Page1 / 3

102_solutions8 - MATH 102 SOLUTIONS TO HW #8 Section 4.4,...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online