course syllubus

course syllubus - Probability and Statistics Cumulative...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Probability and Statistics Cumulative Distribution Function (CDF) of a Random Variable (RV) X CDF X ( z ) = Pr ( X & z ) Discrete: P n i =1 1 ( x i & z ) Pr ( X = x i ) ; where 1 ( E ) = 1 if E is true, and 0 otherwise. Continuous: R z &1 f ( x ) dx = R z &1 1 ( x & z ) f ( x ) dx Expectation of X Discrete Random Variable: & X = E ( X ) = x 1 Pr( X = x 1 ) + ::: + x n Pr( X = x n ) = P n i =1 x i Pr( X = x i ) Continuous Random Variable: & X = E ( X ) = R 1 &1 xf ( x ) dx Expectation of a function of X E [ g ( X )] = P n i =1 g ( x i ) Pr( X = x i ) or E [ g ( X )] = R 1 &1 g ( x ) f ( x ) dx Variance V ar ( X ) = E h ( X & X ) 2 i = 2 X V ar ( X ) = P n i =1 [ x i & X ] 2 Pr( X = x i ) or V ar ( X ) = R 1 &1 ( x & X ) 2 f ( x ) dx V ar ( X ) = E ( X 2 ) ( & X ) 2 r th moment E ( X r ) = P n i =1 x r i Pr( X = x n ) ; or E ( X r ) = R 1 &1 x r f ( x ) dx Marginal Probability P ( Y = y ) = n P i =1 P ( X = x i ;Y = y ) and Marginal Density R 1 &1 f ( y;x ) dx Conditional Probability P ( Y = y j X = x ) = P ( X = x;Y = y ) P ( X = x ) and Conditional Density f ( y;x ) f ( x ) Conditional Expectation E [ Y j X = x ] = P n i =1 y i P ( Y = y i j X = x ) or R 1 &1 yf ( y j X = x ) dy Law of Iterated Expectations E [ E ( Y j X )] = E [ Y ] De&nitions of Independence P ( Y = y j X = x ) = P ( Y = y ) or P ( X = x;Y = y ) = P ( X = x ) P ( Y = y ) Covariance and Correlation cov ( X;Y ) = E [( X & X )( Y & Y )] = XY cov ( X;Y ) = P n i =1 P m j =1 ( x i & X )( y j & Y ) P ( X = x i ;Y = y j ) cov ( X;Y ) = R 1 &1 R 1 &1 ( x & X )( y & Y ) f ( x;y ) dxdy = cov ( X;Y ) & X & Y Means, Variances and Covariances of Sums of Random Variables E ( a + bX + cY ) = a + b& X + c& Y var ( a + bX + cY ) = b 2 2 X + 2 bc XY + c 2 2 Y cov ( a + bX + cY;d + eZ + fW ) = be XZ + bf XW + ce Y Z + cf Y W E ( XY ) = XY + & X & Y Some useful estimators Sample Mean: & X = 1 n P n i =1 X i : Sample Variance: s 2 X = 1 n & 1 P n i =1 & X i & X 2 : Sample Covariance: s XY = 1 n & 1 P n i =1 ( X i & X )( Y i Y ) note that P n i =1 ( X i & X )( Y i Y ) = P n i =1 ( X i...
View Full Document

Page1 / 7

course syllubus - Probability and Statistics Cumulative...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online