DTIC_ADA205678.pdf - (00 DTJC AELCT E o MAR2 9 1983 Uo o Approved tot pub l t0c9 801 Mtsiu~oa Unlinuted DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR

DTIC_ADA205678.pdf - (00 DTJC AELCT E o MAR2 9 1983 Uo o...

This preview shows page 1 out of 277 pages.

You've reached the end of your free preview.

Want to read all 277 pages?

Unformatted text preview: (00 DTJC AELCT E o MAR2 9 1983 Uo o Approved tot pub& l t0c9 801 Mtsiu~oa Unlinuted" DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio r89 3 29 0111' AFIT/GSE/AA/88D-2 DTIC S PRELIMINARY DESIGN OF A MODULAR UNMANNED RESEARCH VEHICLE VOLUME TWO: SUBSYSTEM TECHNICAL DEVELOPMENT DESIGN STUDY AFIT/GSE/AA/88D-2 Approved for public release; distribution unlimited. ELECTE MAR 2 SDO 9 1,99 AFIT/GSE/AA/88D-2 PRELIMINARY DESIGN OF A MODULAR UNMANNED RESEARCH VEHICLE VOLUME TWO: SUBSYSTEM TECHNICAL DEVELOPMENT * DESIGN STUDY Presented to th, Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science Christopher D. Hall, B.S., Captain, USAF o Richard L. Johnson, B.S. ,,TIS Peter J. Lamatsch, B.S., Captain, USAF U:,: - Douglas A. McCabe, B.S., Captain, USAF Paul J.Mueller, III, B.S., Captain, USAF " - Michael E. Paul, B.S., Captain, USAF Letitia M. Pol, B.S., Captain, USAF Graduate Systems Engineering December 1988 * Approved for public release; distribution unlimited. -0 II i I I II I . - - r:,tI DI A-li 0 .. _ __ . Acknowledgments We undertook the design of a Modular Unmanned Research Vehicle after we were presented with the basic idea by Major Lanson Hudson from the Department of Aeronautics and Astronautics * at the Air Force Institute of Technology. This document describes the approach, analysis, and results of the design study. The document is divided into three volumes: Volume One is the System Design Document and contains the system level information; Volume Two, Subsystem * Technical Development, details the design of the various subsystems which make up the MURV; and Volume Three contains the appendices. We would like to thank our advisor, Major Stuart Kramer, for his encouragement and guidance * throughout this effort. We also thank the other members of our committee for their contributions to our work: Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many useful comments over the course of this design study. We received continual assistance from two offices of the Air Force Wright Aeronautical Laborat ry (AFWAL): the Unmanned Research Vehicle Branch (AFWAL/FIGL), and the Performance Analysis Branch (AFWAL/TXAD). In particular, we would like to thank Bill Lindsay, Dave Hammond, and Max Zink for their help in completing this project. Last, but certainly not least, we express our deepest gratitude to our families for their love, support, and patience during these trying months: Rhoda and Duncan Hall, Joan Johnson, Stephanie Lamatsch, Doris Paul, Ed Pohl, and Mike McCabe. For additional information concerning this project, contact Major Stuart Kramer at AFIT/ENY, Wright-Patterson AFB, OH 45433. AUTOVON 785-6998 or (513) 255-6998. iii 0 . . , , i i Table of Content.s Page VOLUME ONE: SYSTEM DESIGN DOCUMENT I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1- II. Development Design Criteria III. Conceptual Design Phase IV. Performance Objectives V. Preliminary Design VI. Implementation Recommendations .......................... 6-1 VII. Summary 7-1 ............................. 2-1 ............................... 3-1 ................................ 4-1 .................................. 5-1 .................................................. VOLUME TWO: SUBSYSTEM TECHNICAL DEVELOPMENT * Acknowledgm ents . . . . . . . . . Table of Contents . ... List of Figures .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. .. . . ... ... .. .. . . . .. . . .. iii . .................................................. iv . List of Tables xv List of Symbols ........................................ List of A bbreviations A bstract I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . .. . .. .. . .. .. .. . .. . .. .. .. . .. . .. .. . .. . .. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1 iv 0mm xii l llilIlllll lIl l l xvii xxii x xv Page II. 0 Vehicle Configuration Development ........ 2.1 2.2 Vehicle Sizing ......... ................................ 2-1 Estimating '-OGW ....... 2.1.2 Estimating Takeoff Thrust-to-Weight, T/W .............. 2-7 2.1.3 Estimating Wing Loading at Takeoff, W/S ............. 2-8 2.1.4 Summary of Preliminary Sizing Parameters .... ........................ External Arrangement ........ 2-2 .......... 2-9 .......................... 2-10 Refined TOGW Estimate .......................... 2-12 Wing Planform Development ............................. 2.3.1 2.4 2-1 2.1.1 2.2.1 2.3 ......................... 2-13 Common Components ............................. The Three Concepts ........ 2-14 ............................ 2-20 0 0 II. MURV-2 Design ....... ......................... 2-22 2.4.3 MURV-3 Design ....... ......................... 2-25 ... ... ... .... 2-20 2-29 2.6 Maneuver Performance ........ 2-29 2.7 Summary ......... Propulsion System ......... 3.2 0 2.4.2 ... Integrated Range and Mission Performance ................... 0 • MURV-1 Design .. .. .. .. ... 2.5 3.1 0 2.4.1 .......................... .................................. 2-32 ................................... Preliminary Engine Selection ....... 3-1 ....................... 3-1 3.1.1 Engine Type Determination ...... ................... 3-2 3.1.2 Turbojet Engine Selection ....... .................... 3-6 Engine Integration ........ ............................. 3-11 3.2.1 Inlet Design Methodology ...... 3.2.2 Preliminary MURV Inlet Designs ..................... 3-20 3.2.3 Inlet Length Optimization ...... .................... 3-23 3.2.4 Nozzle Considerations ....... ...................... 3-24 3.2.5 Installed Thrust ............................ .................... 3-11 .... 3-25 Page IV. * • 3.3 Engine Recommendation ......... ......................... 3-27 3.4 Engine Instrumentation .......... .......................... 3-27 3.5 Fuel System Design .......... 3-28 ............................ 3.5.1 Fuel Tank design ......... 3.5.2 Fuel Supply System ........ ......................... 3-28 3-30 ....................... 3.6 Electrical Power System ......... 3.7 Engine Starting System Components ....... 3.8 Propulsion System Summary ........ 3-32 .......................... ................... Flight Control System Development ......... 3-33 ....................... 3-33 ......................... 4-1 4.1 Design Objectives .......... ............................. 4-1 4.2 Design Approach ........... .............................. 4-3 4.3 ......................... 4.2.1 Mission Scenarios ......... 4.2.2 Development of Requirements ....... .................. Measurement and Discrete Data Requirements ...... 4.3.1 Required Data Items ........ 4.3.2 Data Rates .......... 4.3.3 Measurement Precision ...... 4.3.4 Interface Considerations ........ ............. Flight Control Surface Requirements ....... 4.5 Flight Control System Architecture ....... 4-6 4-9 ............................ .. 4-6 4-6 ....................... 4.4 4.6 4-4 ..................... 4-9 ..................... 4-9 ................... 4-9 .................... 4.5.1 Elements of the Flight Control System ..... 4.5.2 Control Law Development ....... 4.5.3 Interface Considerations ....... ..................... 4-14 4.5.4 Functional Allocation ........ ...................... 4-14 Development Summary .......... .................... .......................... vi ............. 4-11 4-12 4-13 4-22 Page V. * Launch/Recovery System ........... 5.1 * • Problem Definition .......... Scenario ........... 5.1.3 Scope ........... ............................... 5-1 5.1.4 Needs ........... ............................... 5-1 5.1.5 Constraints .......... 5.1.6 Other considerations ........ 5.1.7 Summary .......... System Synthesis ........... 5.6 ........................... . ......... 5-1 .............................. 5-1 ............................ 5-2 ....................... 5-3 ............................. 5-3 ............................ 5-4 .............................. 5-4 5.3.1 Launch System Descriptions ....... ................... 5-5 5.3.2 Recovery System Descriptions ....... .................. 5-10 5.3.3 Formulation of Alternatives ....... 5.3.4 Elimination of Infeasible Designs ...... 5.3.5 Operational Complexity Screening ...... 5.3.6 Summary .......... ................... Final Design Selection ......... ................ 5-16 ............... 5-21 5-22 ........................... 5-23 5.4.1 Introduction ....... 5.4.2 Weight Model ......... 5.4.3 Volume Model ......... 5.4.4 Complexity Model ......... 5.4.5 Final Launch/Recovery System Evaluation ..... ... ........................... 5-23 ........................... 5.5.1 Introduction ..... 5.5.2 Launch Equipment ......... 5.5.3 Recovery Equipment ....... 5-23 .......................... 5-25 ........................ 5-25 Launch/Recovery System Detailed Design ...... Sumnmary. ........... 5-13 ............................. ........................ ....................... ................................. .......... ................ ........................... vii . 5-1 5.1.2 5.3 5.5 ............................. Introduction ......... Value System Design .......... 5.4 5-1 5.1.1 5.2 * ............................... 5-28 5-30 ..... 5-30 5-31 5-39 5-48 10 Page VI. 6.1 Data Acquisition System Objectives ....... 6.2 Onboard Data Collection ......... 6.3 VII. 6.2.2 Transducers .......... 6.2.3 Air Data Measurement ........ 6-3 6-6 ............................ 6-6 ..................... 6-12 ............................. Telemetry System .......... 6.3.1 Modulation .......... ............................ 6-13 6.3.2 Multiplexing .......... ........................... 6-16 6.3.3 Comparison of Telemetry Systems ...... 6.3.4 Transmitter and Receiver Requirements ..... 6.3.5 Data Rate Determination ........ Signal Conditioning .......... 6.5 System Flexibility .......... 6.6 Reliabilitv ......... ............... ............ .................... 6-27 6-28 .................................. .................................. Objectives ............ 7.2 Fuselage Design ......... .. 7-1 .............................. 7.2.1 Cross-section Shape ............................. 7.2.2 Engine Mounting ......... 7-4 7-5 7.4 Empennage Structural Design/Mounting ...... ................ Summary of Fuselage Main Design Features .... Boattail Development ........ Electrical Modularity ...... 7.7 Design Evaluation ........... .. .. ..................... ...................... ........................... ............................ viii 7-16 .................... Wing Structural Design/Mounting ........ Nosecone/Boattail Development ........ 7-14 ......................... 7.3 7.6 7-1 ............................ 7.1 6-19 6-26 ............................. .. 6-17 6-22 ............................ Structural Design/Modularity ........... 7.5.1 0 6-2 ........................ Data Requirements ......... 7.4.1 * 6-1 ................... ......................... 6.2.1 6.4 7.5 6-1 .................................... Data Acquistion ............. .......... 7-18 7-20 7-20 7-21 7-22 7-24 Page VIII. Remote Cockpit Development ............................ Definition of Scope. .. .. ... .... .... .... .... .... .... 8-1 8.2 Objectives .. .. .. ... .... .... .... .... .... .... 8-1 8.3 Remote Cockpit Design Development. *8.1 *8.3.1 .... 8.3.2 8.4 *10.1 .... .. ... .... Data Processing. 9.2 Data Recording. .. .. .. .... ....... 8-3 .... .... ....... 8-3 .... .... ... .... .... .... .... .... .... .... 8-16 9-1 ....... .... 8-4 .... .... 9-1 .... .... .... ....... 9-2 Digital Recording .. .. .. ... .... .... .... ....... 9-3 9.2.2 Analog Recording .. .. .... .... .... .... ........ 9-5 9.2.3 Video Recording. .... .... .... ........ 9-6 .... .. .. .... 9.3 Real-time Display .. .. .... 9.4 Data Acquisition Ground Station. .. .. ... .... .... .... ... ..... .... .... .... .... 9-6 .... 9-6 .... .... .... .... .... .... ...... 10-1 Objectives. .. .. .. .... .... .... .... .... .... ...... 10-2 .... .... ... Airframe Concept Selection .. .. ... .... .... .... 11.1 Approach .. .. ... ... Tracking Systemi. .. .. .... .... .... 11.2 Selection Criteria. .. .. ... .... ... 11.2.1 Aerodynamics .. .. .... 11.4 Evaluation. .. ... .... .... .... .... .... .... .... .... .... ....... The Preferred Airframe Concept .. .. ... ix .... .... Stability aiid Control .. .. .... 11 3 MOE Weighting Factors. .. .. ... *11.5 .... .... .... .. .... 9.1 10.2 Analysis. .. .. ... XI. .... Design Evaluation .. .. ... *9.2.1 X. .... Identification of Controls and Instruments .. .. .. .... Data Processing and Recording. *11.2.2 .. ... General Configuration .. .. .. .... *IX. 8-1 ....... .... 10-2 ...... .......... .... .... 11-1 11-1 ...... 11-1 .... .... .... 11-2 .... .... .... ..... 11-2 .... .... .... ..... 11-4 .... .... .... .... ... ....... .... 11-5 .... 11-8 Page 11.6 Airframe/Engine Evalutation *11.6.1 ....................... Configuration Optimization. .. .. ... 11.6.2 Analysis .. .. .. ... 11.7 Summary. .. .. ... 0Bibliography .. .. ... .... .... .... .... .... .... .... .... .... .... .... .... .... ...... .... .... .... .... .... .... 11-9 ... .... .... .... 11-8 ..... 11-15 11-20 BIB-i VOLUME THREE: APPENDICES *A. o Target Experiments. .. .. .... .... .... .... .... .... ........ B. Takeoff and Landing Computer Programs and Results .. .. ... C. Additional Dynamical Simiiarity Anaiyses. .. .... D. Aircraft Analysis With~ IDAS. ... E. Current Production Low Thrust Engines. F. Engine Selection .. .. ... G. The Analytic Hierarch~y Process .. .. .... .... .... .... .... .......- H. SIRPP Computer Program .. .. ... .... .... .... .... ...... 1. MURV Inlet Length Optimization Results. .. .. ... . K. *L. .. .. .... .... .... .. ... .... .... .... .... ... A-1 .... .... .... .... .... ....... .... .... .... ......- .... .... .... .....- Battery Characteristics .. .. .... .... .... .... .... .... ... MURV-320 Takeoff Distance Estimation .. .. .. .... M. Aircraft C'onfiguration Optimization. N. Test Sites. .. .. .... ... .... .. .. ... .... .... x .............. F-I 1 H-1 Preliminary Engine Installed Thrust Values. .. .. ... .... D-1 E-1 .... .... B-i CI- 1 .... .... .... .... ......... .... .... .... .... 1 1 K-i L-1 .... .... ........... .... .... .... M-1 ....... N-i Page 0. Transducer Selection............................................. P. Launch/Recovery System. 0x .. .. ... .... 0-1 .... .... .... .... ...... P- I List of Figures Page Figure * 2.1. Solutions for Mb and CD which Meet Landing Constraints .................. 2-10 2.2. MURV-1 Configuration ........... ................................ 2-23 2.3. MURV-2 Configuration ........... ................................ 2-27 2.4. MURV-3 Configuration ........... ................................ 2-28 2.5. Free-Body Diagram of Aircraft Forces ......... 2.6. P. Contour Maps for Candidate MURV Designs ....... 3.1. Inlet Duct Station Naming Convention ........ 3.2. Inlet Lip Shaping ............ 3.3. Inlet Geometry ............ 3.4. Boundary Layer Diverter Drag Variation with Mach Number ..... 3.5. Model 312 Inlet Differential Pressures ......... ........................ 3-24 3.6. Model 320 Inlet Differential Pressures ......... ........................ 3-25 3.7. Inlet Optimization Pressure Recoveries ........ ....................... 3-26 3.8. Fuel Tank Design ............ 4.1. Flight Control System #1 .......... ............................... 4-15 4.2. Flight Control System #2 .......... ............................... 4-16 4.3. Flight Control System #3 .......... ............................... 4-17 .mM ....................... 2-33 3-13 3-15 3-19 ........... ................................... 3-21 3-31 4.4. Central Flight Control Program .......... ........................... 4-18 4.5. Primary Flight Control Program ......... ........................... 4-19 4.6. Backup Flight Control Program ......... 5.1. Launch/ Recovery System Objective Hierarchy Tree ....... ........................... mn am al umumnai 4-20 ................ ................................... ........................... xii . .................. ..................................... 5.3. Tamnar EDO on Rail Launcher .......... 0 . 2-31 ................................... 5.2. Mazlat Scout 800 ............ * ........................ n i 5-5 5-6 5-7 Figure Page 5.4. AEL 4700 Snipe Mk III on Catapult Launcher ....... ................... 5.5. GAF Jindvik Mk 4A ............ 5.6. AQM-37 Variant Target carried by a US Navy QF-4B Phantom .... 5.7. Sportavia RF-5B Motorglider with Center Wheel ....... 5.8. Aquilla Net Recovery ........... .................................. ......... .................. ........................ 5.12. Illustration for Landing Analysis ......... 5.13. Landing Gear Nomenclature .......... 5-11 5-13 ......................... 5.11. Force Diagram Using an Elevated Rail ......... 5-10 5-12 ................................ 5.10. Force Diagram During Ground Roll ......... 5-16 5-17 ........................... 5-19 ............................. 5-31 .......................... 5.14. Landing Gear with Bungee Cords .......... 5.15. Cantilever Spring Gear - Fuslage Attachment ....... 5.16. Telescopic Nose Wheel Assembly ......... .................... ........................... 5-33 5-34 5-3. 5.17. Top and Side View of the Landing Gear Attachment Locations .............. 5-41 5.18. Forces in a Turn ............ 5-42 .................................... 5.19. Static Trail ............. ....................................... 5.20. Nose Gear Configurations ........... 5-44 ............................... 5.21. Front Nose Gear Deployment .......... 5-45 ............................. 5-46 ........................... 5-47 5.22. Sequoia F8L "Falco" Nose Gear ......... 6.1. Variation of Total Pressure Error with Angle of Attack for a Shielded Tube . . . 6-8 6.2. Diagram of Types of Installations for Static Pressure Measurement ............ 6-9 6.3. Two Typical Multiple Output Air Data Sensors ....... 6.4. Typical Telemetry System Components ........ 6.5. Pulse Modulations ............ 7.1. I-Beam Fuselage Cross-Section Concept ........ 7.2. Twin-boom Fuselage Cross-Section Concept ........ ll mmmm m I .................. ....................... ................................... xiii 0a 5-9 ................................. 5.9. LSI/DS SkyEye R4E-40 ........... 0 5-8 N•rl 6-11 6-13 6-15 ....................... .................... 7-6 7-7 Figure Page 7.3. H-Beam Fuselage Cross-Section Concept ....... * 7-8 7.4. U-Beam and Rounded-Square Fuselage Cross- Section Concepts .... 7.5. Breakdown of Fuselage into Nosecone, Main Fuselage, and Boattail Sections 7.b. Rails/Sidewalls/Covers Fuselage Structure ...... * ...................... ......... ..................... 7.7. Cross-Section View of Engine Mounting in Fuselage ..... ............ 11.3. Maneuver T/W Sensitivity to tj and PM ........ 0 , i xiv 7-10 7-15 11-13 11-17 11.2. TOGW Sensitivity to Fuel Load - tf ....................... * . . 7-12 ................ 11.1. Minimum Allowable T/W at Takeoff versus Wing Loading .... 7-9 ...................... 11-18 List of Tables Table 2.1. Page Preliminary Weight Breakdown Estimate for the MURV ................... 2.2. Preliminary MURV Sizing Parameters ....... MURV Wing Section Characteristics (NACA Series 64 Airfoil) .............. 2-14 2.4. MURV Wing Design Parameters ....... 2-15 2.5. MURV Vertical Tail Sizing Parameters ....... 2.6. Common Component Design Summary ...... 2.7. Mission Performance Results ........ 2.8. MURV Concept Design Summary ....... 3.1. MOE Ratings for Engine Categories ....... 3.2. MURV Candidate Low Thrust Turbojet Engines ........................ 3-5 3.3. Engine Measure Comparison Matrix ....... 3-9 .............................
View Full Document

  • Fall '19
  • Force, Test, The Land, Internal combustion engine, lift coefficient, fuselage, Gross vehicle weight rating

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture