11 - b. Find P(1 < X 3) c. Find P(X 0) d. Find...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Consider a random variable with the following probability  distribution: P(X = 0)  = 0.1, P(X = 1) = 0.2, P(X= 2) = 0.3, P(X =  3) = 0.3, and P(X= 4) = 0.1. Inf  P(X = 0)  = 0.1  P(X = 1) = 0.2 A. D. X P (X) 0 0.1 1 0.2 2 0.3 3 0.3 4 0.1 P(X ≤ 2) = 0.6 B. E. X P (X) E(X)=∑X*P(X)= 0 0.1 1 0.2 2 0.3 3 0.3 4 0.1 P (1<X≤3)= 0.6 C. X P (X) a.  Find P(X ≤ 2)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: b. Find P(1 &lt; X 3) c. Find P(X 0) d. Find P(X 3 x 2) e. Find the expected value of X. f. Find the standard deviation of X. 0.1 1 0.2 2 0.3 3 0.3 4 0.1 P (X &gt; 0) = 0.9 formation Needed Values P(X= 2) = 0.3 P(X= 4) = 0.1. P(X = 3) = 0.3 2.1...
View Full Document

This note was uploaded on 08/04/2011 for the course ECN 601 taught by Professor Professor during the Spring '10 term at Grand Canyon.

Page1 / 4

11 - b. Find P(1 &amp;amp;lt; X 3) c. Find P(X 0) d. Find...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online