Extra Credit Problem 11

# Extra Credit Problem 11 - f Find the standard deviation of...

This preview shows pages 1–4. Sign up to view the full content.

Consider a random variable with the following probability  distribution: P(X = 0)  = 0.1, P(X = 1) = 0.2, P(X= 2) = 0.3, P(X =  3) = 0.3, and P(X= 4) = 0.1.  P(X = 0)  = 0.1  P(X = 1) = 0.2 A. D. X P (X) X 0 0.1 0 1 0.2 1 2 0.3 2 3 0.3 3 4 0.1 4 P(X ≤ 2) = 0.6 B. E. X P (X) E(X)=∑X*P(X)= 0 0.1 1 0.2 2 0.3 3 0.3 4 0.1 P (1<X≤3)= 0.6 C. a.  Find P(X ≤ 2) b.  Find P(1 < X ≤ 3)  c.  Find P(X › 0) d.  Find P(X › 3| x › 2) e.  Find the expected value of X.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f. Find the standard deviation of X. X P (X) F. 0.1 Standard Deviation= S 1 0.2 Sqrt(E(X^2)= 2 0.3 E(X)^2= 3 0.3 Stdev:= 4 0.1 P (X > 0) = 0.9 Information Needed Values P(X= 2) = 0.3 P(X= 4) = 0.1. P(X = 3) = 0.3 P (X) 0.1 0.2 0.3 Continued P (X > 3 and X > 2) 0.1 0.3 0.1 P (X > 2) 0.4 Find P(X › 3 |x › 2) 0.25 2.1 Sqrt( E(X^2) –(E(x))^2) 5.7 4.41 1.29...
View Full Document

### Page1 / 4

Extra Credit Problem 11 - f Find the standard deviation of...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online