lecture30 - 1 ECE 303 – Fall 2005 – Farhan Rana –...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 ECE 303 – Fall 2005 – Farhan Rana – Cornell University Lecture 30 An Array of Two Hertzian Dipole Antennas In this lecture you will learn: • Hertzian dipole antenna arrays • Interference and far-field radiation patterns ECE 303 – Fall 2005 – Farhan Rana – Cornell University Characteristics of a Single Hertzian Dipole Antenna Antenna Gain: For a Hertzian dipole the gain is: ( ) ( ) ( ) θ π φ θ 2 2 sin 2 3 4 ˆ . , , = = r P r t r S G rad r r Antenna Radiation Pattern: For a Hertzian dipole the radiation pattern is: ( ) ( ) ( ) θ φ θ φ θ 2 max sin , , = = G G p ( ) , = φ θ p θ (degrees) 180 90 30 60 120 150 ( ) , = φ θ p θ 2 ECE 303 – Fall 2005 – Farhan Rana – Cornell University A Single Hertzian Dipole Antenna Not at Origin - I y z ( ) ( ) h r d I z r J r r r r − = 3 ˆ δ What if one has a Hertzian dipole sitting at some arbitrary point? If one is interested in radiation far-fields only, then assume: r h d r r << ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ << π λ 2 , θ h r r r h r r h r r h r r r h r h h r r h r r r r r r r r r r r r r r r r r r . ˆ . 2 1 . 2 . 2 . . 2 . . 2 2 − ≈ − = − = − ≈ − + = − ( ) h r r k j o e r Id z r . ˆ 4 ˆ − − ≈ π µ ( ) ( ) [ ] h r k j r k j ff e e r Id k j r H r r r . ˆ sin 4 ˆ − = θ π φ ( ) ( ) [ ] h r k j r k j o ff e e r Id k j r E r r r . ˆ sin 4 ˆ − = θ π η θ So we get: Additional phase factor x r r h r φ ( ) ( ) ( ) h r k j o r r k j o e h r Id z r A dv e r r r J r A r r r r r r r r r r r r r r − − − − − = ⇒ ∫∫∫ − = π µ π µ 4 ˆ ' ' 4 ' ' ( ) h r k j o e h r Id z r A r r r r r r − − − = π µ 4 ˆ ECE 303 – Fall 2005 – Farhan Rana – Cornell University A Single Hertzian Dipole Antenna Not at Origin - II y z ( ) ( ) h r d I z r J r r r r − = 3 ˆ δ θ x r r a φ x a h ˆ = r Example: ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) z y x r e e r Id k j r E h r k j r k j o ff ˆ cos ˆ sin sin ˆ cos sin ˆ sin 4 ˆ . ˆ θ φ θ φ θ θ π η θ + + = = − r r r Suppose: Note that: ( ) ( ) ( ) ( ) [ ] φ θ θ π η θ cos sin sin 4 ˆ a k j r k j o ff e e r Id k j r E − = ⇒ r r Therefore: ( ) ( ) ( ) ( ) [ ] φ θ θ π φ cos sin sin 4 ˆ a k j r k j ff e e r Id k j r...
View Full Document

This note was uploaded on 02/02/2008 for the course ECE 3030 taught by Professor Rana during the Fall '06 term at Cornell University (Engineering School).

Page1 / 9

lecture30 - 1 ECE 303 – Fall 2005 – Farhan Rana –...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online