Antenna - ANTENNAS FOR LOW POWER APPLICATIONS By Kent Smith...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
ANTENNAS FOR LOW POWER APPLICATIONS By Kent Smith Introduction: There seems to be little information on compact antenna design for the low power wireless field. Good antenna design is required to realize good range performance. A good antenna requires it to be the right type for the application. It also must be matched and tuned to the transmitter and receiver. To get the best results, a designer should have an idea about how the antenna works, and what the important design considerations are. This paper should help to achieve effective antenna design. Terminology: Wavelength - Important for determination of antenna length, this is the distance that the radio wave travels during one complete cycle of the wave. This length is inversely proportional to the frequency and may be calculated by: wavelength in cm = 30,000 / frequency in MHz. Groundplane - A solid conductive area that is an important part of RF design techniques. These are usually used in transmitter and receiver circuits. An example is where most of the traces will be routed on the topside of the board, and the bottom will be a mostly solid copper area. The groundplane helps to reduce stray reactances and radiation. Of course, the antenna line needs to run away from the groundplane. dB (decibel) - A logarithmic scale used to show power gain or loss in an RF circuit. +3 dB is twice the power, while -3 dB is one half. It takes 6 dB to double or halve the radiating distance, due to the inverse square law. The Basic Antenna and how it Works. An antenna can be defined as any wire, or conductor, that carries a pulsing or alternating current. Such a current will generate an electromagnetic field around the wire and that field will pulse and vary as the electric current does. If another wire is placed nearby, the electromagnetic field lines that cross this wire will induce an electric current that is a copy of the original current, only weaker. If the wire is relatively long, in terms of wavelength, it will radiate much of that field over long distances. The simplest antenna is the “whip”. This is a quarter wavelength wire that stands above a groundplane. The most common examples are found on automobiles and are used for broadcast radio, CB and amateur radio, and even for cellular phones. This design goes back to the 1890's when Marconi set out to prove that radio signals could travel long distances. To be successful, he had to stretch a long wire above the ground. Due to the low frequencies, thus a long wavelength, the wire had to be long. He also found that the wire worked better when it was high above ground. 1/4 wavelength Basic Full-size Whip:
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
All antennas, like any electronic component, have at least two connection points. In the case of the whip, there must be a connection to a ground, even if the groundplane area is nothing more than circuit traces and a battery. The whip and groundplane combine to form a complete circuit. The electromagnetic field is set up between the whip and the ground plane, with current flowing through the field, thus completing the circuit.
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 16

Antenna - ANTENNAS FOR LOW POWER APPLICATIONS By Kent Smith...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online