Digraphs+Theory,+Algorithms+and+Applications_Part36

Digraphs+Theory,+Algorithms+and+Applications_Part36 -...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: References 1. A. ´ Ad´am. Problem. In ‘Theory Graphs Applications’, Proc. Coll. Smolenice , pages 12–18, Czech. Acad. Sci. Publ., 1964. 2. A. ´ Ad´am. Bemerkungen zum graphentheoretischen Satze von I. Fidrich. Acta Math. Acad. Sci. Hungar. , 16:9–11, 1965. 3. R. Aharoni and R. Holzman. Fractional kernels in digraphs. J. Combin. Theory Ser. B , 73(1):1–6, 1998. 4. R. Aharoni and C. Thomassen. Infinite, highly connected digraphs with no two arc-disjoint spanning trees. J. Graph Theory , 13(1):71–74, 1989. 5. A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed graph. SIAM J. Computing , 1(2):131–137, 1972. 6. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of com- puter algorithms . Addison-Wesley Publishing Co., Reading, Mass.-London- Amsterdam, 1975. 7. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows . Prentice Hall Inc., Englewood Cliffs, NJ, 1993. Theory, algorithms, and applications. 8. M. Aigner and G. Ziegler. Proofs from the book . Springer Verlag, Berlin Heidelberg New York, 1998. 9. A. Ainouche. An improvement of Fraisse’s sufficient condition for hamiltonian graphs. J. Graph Theory , 16:529–543, 1992. 10. N. Alon. Disjoint directed cycles. J. Combin. Theory Ser. B , 68(2):167–178, 1996. 11. N. Alon and G. Gutin. Properly colored Hamilton cycles in edge colored complete graphs. Random Structures and Algorithms , 11:179–186, 1997. 12. N. Alon and N. Linial. Cycles of length 0 modulo k in directed graphs. J. Combin. Theory Ser. B , 47(1):114–119, 1989. 13. N. Alon, C. McDiarmid, and M. Molloy. Edge-disjoint cycles in regular directed graphs. J. Graph Theory , 22(3):231–237, 1996. 14. N. Alon and J.H. Spencer. The probabilistic method . Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1992. With an appendix by Paul Erd˝os, A Wiley-Interscience Publication. 15. N. Alon and M. Tarsi. Colourings and orientations of graphs. Combinatorica , 12:125–134, 1992. 16. N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding sim- ple paths, cycles and other small subgraphs within large graphs. In Proc. 26th Annual ACM Symp. Theory Computing , pages 326–335, Montreal, Canada, 1994. ACM Press. 17. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM , 42:844– 856, 1995. 18. N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica , 17:209–223, 1997. 684 References 19. B. Alspach. Cycles of each length in regular tournaments. Canad. Math. Bull. , 10:283–285, 1967. 20. B. Alspach, J.-C. Bermond, and D. Sotteau. Decomposition into cycles. I. Hamilton decompositions. In Cycles and rays (Montreal, PQ, 1987) , pages 9–18. Kluwer Acad. Publ., Dordrecht, 1990....
View Full Document

Page1 / 20

Digraphs+Theory,+Algorithms+and+Applications_Part36 -...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online