Digraphs+Theory,+Algorithms+and+Applications_Part37

Digraphs+Theory,+Algorithms+and+Applications_Part37 -...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: References 703 461. J. Jir´asek. On a certain class of multidigraphs, for which reversal of no arc de- creases the number of their cycles. Comment. Math. Univ. Carolinae , 28:185– 189, 1987. 462. J. Jir´asek. Some remarks on ´ Ad´ am’s conjecture for simple directed graphs. Discrete Math. , 108:327–332, 1992. 463. D.B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the Association for Computing Machinery , 24:1–13, 1977. 464. D.S. Johnson, C.R. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; part 1, Graph partitioning. Operations Research , 37:865–892, 1989. 465. D.S. Johnson, C.R. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated annealing: an experimental evaluation; part 2, Graph coloring and number partitioning. Operations Research , 39:378–406, 1991. 466. D.S. Johnson and L.A. McGeoch. The traveling salesman problem: A case study in local optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization , pages 215–310. John Wiley &Sons, New York, 1997. 467. T. Jord´an. Increasing the vertex-connectivity in directed graphs. In Algorithms—ESA ’93 (Bad Honnef, 1993) , volume 726 of Lecture Notes in Comput. Sci. , pages 236–247. Springer, Berlin, 1993. 468. T. Jord´an. Connectivity augmentation problems in Graphs . PhD thesis, De- partment of Computer Science, E¨otv¨ os University, Budapest, 1994. 469. T. Jord´an. On the optimal vertex-connectivity augmentation. J. Combin. Theory Ser. B , 63:8–20, 1995. 470. H.A. Jung. Eine Verallgemeinerung des n-fachen zusammenhangs f¨ur Graphen. Math. Ann. , 187:95–103, 1970. 471. M. Kano. Ranking the vertices of an r-partite paired comparison digraph. Discrete Appl. Math. , 17(3):245–253, 1987. 472. M. Kano and A. Sakamoto. Ranking the vertices of a weighted digraph using the length of forward arcs. Networks , 13(1):143–151, 1983. 473. M. Kano and A. Sakamoto. Ranking the vertices of a paired comparison digraph. SIAM J. Algebraic Discrete Methods , 6(1):79–92, 1985. 474. R.M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) , pages 85–103. Plenum, New York, 1972. 475. A.V. Karzanov. The problem of finding the maximal flow in a network by the method of preflows. Dokl. Akad. Nauk SSSR , 215:49–52, 1974. 476. J.G. Kemeny and J.L. Snell. Finite Markov Chains . Springer-Verlag, New York, 1976. 477. A. Kemnitz and B. Greger. A forbidden subdigraph condition implying an oriented graph to be Hamiltonian. Congr. Numer. , 130:127–131, 1998....
View Full Document

This document was uploaded on 08/10/2011.

Page1 / 20

Digraphs+Theory,+Algorithms+and+Applications_Part37 -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online