{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

20EFinalSolns!!!

20EFinalSolns!!! - 1(6 points Evaluate 1 1 11 y=o sin(x 3...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
1. (6 points) Evaluate 1 1 11 sin (x 3 ) dxdy. y=o x=..fji by changing the order of integration. (Note: you need not simplify trigonometric expressions in your final answer.) , I I ' I XL , t SV'""'i Sinlx:'')dxd\ -:: So So S\l'Ilx.~) c1~dx: j ~ i CJ 2 Y -"'IV) ~ ~ :-f) .c--J. -2) if J' \J, (j) s~ >l &X ~ ~ I J ~cJ ~ ""5 -- Q ~ ~~,~ ~:t E fi ~ .>< 57 ~ j Q - e ~ £ ~ --Q <:J $ =~J~H l x~ -r S~x3, I 0 d x \ vt=x'3 Xl cs ir) ",3 d;>< d~ = 3,,2dx ~: X =0 -=t 4 ::.6 l X -=., =::, \A :::.. J - - J() r ~ Vrtu d~ _\ "3 LDS u. \ 0 1 - \ , -- eD~ \ ~- Cos () 3 3 -\ 3 (oS, \- l. 3
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2. (6 points) Find an appropriate change of variables to evaluate J In (x + y) eZ'-i' dxdy, where R is the square with vertices (2,0), (0,2), (-2,0), (0, -2). (Hint: first determine equations for each side of the square R.) /'1-- v :' ',. ~ ~ ~ ~-:; u+ --- v --2<\1..<"''- "" = X Jr "-'\ 2- \j -= 'X- 'j ~ LA-V -L,zV<'2 ~:= 1- I J )(/d~ dx/dv \/2 til.' _ t \ -= - \ t:t-~ 2.. 1 d~/dv. ~~" \/2. -:"2 Sf ~2 '12 d R. Lx \-~l e Xd~ -= 5S u e U-v (-i~ 'd V d LA -::. 121~ \Ae ~" ci" d'" -:: 12 \) ~elA~ \:2- cl~ -') lA -2 -2 -2- 2. \.4 -24 \ 1- - '2,-,\ _ ~'2. 2u e __ E:, - - e -e du - -2 . 2- -2- '?I..\ 2,,\ \ 1- _ s- \-e - - e2~\: -= le.Lt y _ - ~ - 2- -2 I'r -, /~ '), I'- 'Ix ~ &~,~ -r+~_ '< 1- -2.. ~-:;. y..-7- )<_'-\~ J, e-l1~
Background image of page 2
3. Consider the vector field F(x, y, z) (x - yzsin(xyz), y - xzsin(xyz), -xysin(xyz)). (a) (3 points) Find a scalar function /(x, y, z) such that F V /.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}