NEWTON - NewtonRaphsonMethod NewtonRaphsonMethod f(x) [x f(...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Newton-Raphson Method     
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Newton-Raphson Method ) (x f ) f(x - = x x i i i i + 1 f(x) f(x i ) f(x i-1 ) x i+2 x i+1 x i X θ ( 29 [ ] i i x f x , Figure 1  Geometrical illustration of the Newton-Raphson method. 2
Background image of page 2
Derivation f(x) f(x i ) x i+1 x i X B C A α ) ( ) ( 1 i i i i x f x f x x - = + 1 ) ( ) ( ' + - = i i i i x x x f x f AC AB = 29 α tan( Figure 2  Derivation of the Newton-Raphson method. 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Algorithm for Newton- Raphson Method 4
Background image of page 4
Step 1 ) ( x f Evaluate symbolically. 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Step 2 ( 29 ( 29 i i i i x f x f - = x x + 1 Use an initial guess of the root,    , to estimate the new  value of the root,      , as i x 1 + i x 6
Background image of page 6
Step 3 0 10 1 1 x - x x = i i i a × + + Find the absolute relative approximate error        as a 7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Step 4 Compare the absolute relative approximate error   with the pre-specified relative error tolerance     .   Also, check if the number of iterations has exceeded  the maximum number of iterations allowed. If so,  one needs to terminate the algorithm and notify the  user. s Is            ?   Yes No Go to Step 2 using new  estimate of the root. Stop the algorithm s a 8
Background image of page 8
You are working for ‘DOWN THE TOILET COMPANY’  that makes floats for ABC commodes.  The floating ball  has a specific gravity of 0.6 and has a radius of 5.5 cm.   You are asked to find the depth to which the ball is  submerged when floating in water. Figure 3 
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 26

NEWTON - NewtonRaphsonMethod NewtonRaphsonMethod f(x) [x f(...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online