NEWTON - NewtonRaphsonMethod NewtonRaphsonMethod f(x[x f x...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Newton-Raphson Method     
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Newton-Raphson Method ) (x f ) f(x - = x x i i i i + 1 f(x) f(x i ) f(x i-1 ) x i+2 x i+1 x i X θ ( 29 [ ] i i x f x , Figure 1  Geometrical illustration of the Newton-Raphson method. 2
Image of page 2
Derivation f(x) f(x i ) x i+1 x i X B C A α ) ( ) ( 1 i i i i x f x f x x - = + 1 ) ( ) ( ' + - = i i i i x x x f x f AC AB = 29 α tan( Figure 2  Derivation of the Newton-Raphson method. 3
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Algorithm for Newton- Raphson Method 4
Image of page 4
Step 1 ) ( x f Evaluate symbolically. 5
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Step 2 ( 29 ( 29 i i i i x f x f - = x x + 1 Use an initial guess of the root,    , to estimate the new  value of the root,      , as i x 1 + i x 6
Image of page 6
Step 3 0 10 1 1 x - x x = i i i a × + + Find the absolute relative approximate error        as a 7
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Step 4 Compare the absolute relative approximate error   with the pre-specified relative error tolerance     .   Also, check if the number of iterations has exceeded  the maximum number of iterations allowed. If so,  one needs to terminate the algorithm and notify the  user. s Is            ?   Yes No Go to Step 2 using new  estimate of the root. Stop the algorithm s a 8
Image of page 8
Example 1 You are working for ‘DOWN THE TOILET COMPANY’  that makes floats for ABC commodes.  The floating ball  has a specific gravity of 0.6 and has a radius of 5.5 cm.   You are asked to find the depth to which the ball is  submerged when floating in water.
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern