351_Dynamics 11ed Manual

351_Dynamics 11ed Manual - Engineering Mechanics Dynamics...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Engineering Mechanics - Dynamics Chapter 15 e( −vB1y cos ( θ ) − vB1x sin ( θ ) ) = vB2n ⎛ vB1x ⎞ ⎜ ⎟ ⎜ vB1y ⎟ ⎜ vB2n ⎟ ⎜ ⎟ = Find ( vB1x , vB1y , vB2n , vB2t , t , R) ⎜ vB2t ⎟ ⎜t⎟ ⎜ ⎟ ⎝R⎠ ⎛ vB1x ⎞ ⎛ 3.00 ⎞ ft ⎜ ⎟=⎜ ⎟ ⎝ vB1y ⎠ ⎝ −6.00 ⎠ s t = 0.19 s R = 0.79 ft ⎛ vB2n ⎞ ⎛ 1.70 ⎞ ft ⎜ ⎟=⎜ ⎟ vB2t ⎠ ⎝ 6.36 ⎠ s ⎝ ⎛ vB2n ⎞ ft ⎜ ⎟ = 6.59 s ⎝ vB2t ⎠ *Problem 15-72 The drop hammer H has a weight WH and falls from rest h onto a forged anvil plate P that has a weight WP. The plate is mounted on a set of springs that have a combined stiffness kT . Determine (a) the velocity of P and H just after collision and (b) the maximum compression in the springs caused by the impact. The coefficient of restitution between the hammer and the plate is e. Neglect friction along the vertical guideposts A and B. Given: WH = 900 lb kT = 500 lb ft WP = 500 lb g = 32.2 ft 2 s h = 3 ft e = 0.6 Solution: δ st = WP kT vH1 = 2g h vP2 = 1 ft s Guesses vH2 = 1 Given ft s ⎛ WH ⎞ ⎜ ⎟ vH1 = ⎝g⎠ δ = 2 ft ⎛ WH ⎞ ⎛ WP ⎞ ⎜ ⎟ vH2 + ⎜ ⎟ vP2 ⎝g⎠ ⎝g⎠ e vH1 = vP2 − vH2 349 ...
View Full Document

This note was uploaded on 08/16/2011 for the course EGN 3321 taught by Professor Christianfeldt during the Spring '08 term at University of Central Florida.

Ask a homework question - tutors are online