packageSOS

packageSOS - Package for MATH 239 Final Exam Prepared by...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Package for MATH 239, Final Exam Prepared by Abel Molina 1 August 6, 2011 Contents 1 Enumeration 2 1.1 Basic tools for enumeration . . . . . . . . . . . . . . . . . . . 2 1.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Properties of generating functions . . . . . . . . . . . . . . . . 4 1.3.1 The Sum Lemma . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 The Product Lemma . . . . . . . . . . . . . . . . . . . 4 1.4 The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . 5 1.5 Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Solving problems using generating functions . . . . . . . . . . 6 1.6.1 Partitions of an integer . . . . . . . . . . . . . . . . . 7 1.6.2 Binary strings . . . . . . . . . . . . . . . . . . . . . . . 8 1.6.3 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6.4 Binary trees . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6.5 Bivariate generating functions . . . . . . . . . . . . . . 11 1.7 Homogeneous recurrence relations . . . . . . . . . . . . . . . 12 2 Introduction to Graph Theory 13 2.1 Families of graphs . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Graph isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Adjacency and incidence matrices . . . . . . . . . . . . . . . . 15 2.4 Paths and cycles . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Breadth-first search . . . . . . . . . . . . . . . . . . . . . . . 20 2.8 Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1 [email protected] 1 2.9 Conditions for planarity . . . . . . . . . . . . . . . . . . . . . 24 2.10 Colourability . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.11 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.12 Bipartite matching . . . . . . . . . . . . . . . . . . . . . . . . 28 2.13 Edge-colourings . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Tips for the exam 32 1 Enumeration We will speak about sets whose elements are called configurations, each of them with an associated non-negative weight. In our problems, we will want to know how many configurations are there of an specific weight. 1.1 Basic tools for enumeration Definition 1. For any real number a and non-negative integer k , we define a choose k , denoted ( a k ) , as a ( a- 1) ... ( a- k + 1) k ( k- 1) ... 1 . Remark 1. If a is equal to a positive integer n , then ( n k ) is the number of subsets of size k of a set of size n : Proof. Let L be the set of all ordered lists of k distinct numbers from the set of size n . There are n ways to choose the first element, n- 1 ways to choose the second, and so on, so | L | = n ( n- 1) ... ( n- k + 1). However, there are k * ( k- 1) * ( k- 2) ... * 1 ways to permute each list of k elements (by choosing the first element, then the second element, and so on). Hence, the number ofthe first element, then the second element, and so on)....
View Full Document

This note was uploaded on 08/13/2011 for the course MATH 239 taught by Professor M.pei during the Spring '09 term at Waterloo.

Page1 / 33

packageSOS - Package for MATH 239 Final Exam Prepared by...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online