# r1 - Some questions possibly relevant to MATA33 B....

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Some questions possibly relevant to MATA33 B. Determine whether each of the following statements is (a) always true, (b) always false, or (c) sometimes true and sometimes false. If always true, explain. If not always true, provide a counterex- ample. The statements are phrased in If ..., then ... form, but you can imagine them being worded differ- ently. For example, the first statement is equivalent to Every matrix can be reduced. 1. If is any matrix, then has a reduced form. Hint: p. 252. 2. If A is lower triangular, then A is invertible. 3. If A is invertible, then A is square. 4. If A has a square (i.e. A 2 exists), then A is square (i.e. A is n n ). 5. If A is square, then A n exists for any natural number n . 6. If D is diagonal, then D is invertible. 7. If A is square and has a zero-row, then A is not invertible. 8. If A is not invertible, then the reduced form of A has at least one zero-row. 9. If the reduced forms of A and B are both R , then A = B . 10. If A is invertible, then ( A- 1 )- 1 = A . Hint: Interpret A- 1 A = I carefully....
View Full Document

## This note was uploaded on 08/14/2011 for the course MAT a33 taught by Professor G during the Spring '11 term at University of Toronto.

### Page1 / 2

r1 - Some questions possibly relevant to MATA33 B....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online