This preview shows page 1. Sign up to view the full content.
Unformatted text preview: k is a constant for each k = 1 , 2 ,...,n and n X k =1 a 2 k = 1. Let z = e u ( x 1 , x 2 ,..., x n ) and verify that n X k =1 2 z x 2 k = z . 7. Let z = x 2 + xy + y 2 , x = s + t, and y = st . Find z s and z t two ways: (a) By rst substituting x and y as functions of s and t and dierentiating directly. (b) By the chain rule. 8. Repeat problem 7 for the functions z = x y , x = se t , and y = 1 + set NOTES: 1. The FINAL EXAMINATION is on Tuesday, April 22, 9am12noon in the GYM. A Review Sheet for the Exam will be posted at the Website in due course. 2. Friday, March 21 is a holiday and thus there are no MATA33 lectures on that day. That missed lecture will essentially be madeup on Tuesday, April 7 in accordance with the UTSC Calendar....
View
Full
Document
 Spring '11
 G
 Math

Click to edit the document details