Differentable Equations Test 2A001

Differentable Equations Test 2A001 - +99 2 A T , a “’F...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: +99 2 A T , a “’F may; fam¢.¥t’§mf are: [l-nggarf’) [(Agflxyégg Bx) + 0( C Ax)(8¢m)+ “Mafia: 89] _ EMMY”) + 0 M‘VZBeB’DJr 1(2Az”’)(13c‘3”)] Emm(213¢3"j_[(lhm>(56 8,0]? 0 .13th -" Appr,‘ i 0 .XAH rm/ muwibc‘ffs 5w?!“ 1M“ij Make. {’flh‘s $C‘ff IMCarly a‘fldfipflfldf’lfi '2)7H’WIN17~70 ' d I; o ccg ‘A river‘*?2$0 ré7~€¢¥ (r—V6)Cf*3~) <« “(16-354 (“/ctzfc ’Séfizje 7‘ €QV(C,/,as1?x 442 5“”5") 1’ 1L “L 72‘: ml: z>h ’b (£47 a? “’SCCos Cg +CSI‘4’52 5" 6 g; r \ “("J'E Mix : f K I {O 9’ “i/v our ‘7 “(7 *[17 : Lgé elm U; as. :11; 2636“ 'Ibe +‘Ié' +126 “:0 ~ -1 4* (4‘ t1, Walea’“ 45¢ ‘Vzr—ch-“X / j) W , 7 ’27: t)“ r _, fwoZ» 70!) -yPO) 4ybx) r2 “ r v 2 z 0 {’3‘ I) ( r2 2) . _ _/ 37' \ r1 1 C fiyn2x‘; ’ rm ‘ 7’” :3C3X9.‘n1{235’5 ., X'-' I V" V (16 x “2 N 7”? ’ 21478:" , m k ’2‘ “ml” ‘5’?“ yé t LI 6 4' 6.2x . - 3 VP (1) v; {Wkly , _‘ ‘ M, 7’71!” "3?:‘fifl’72x r29.)ij 2X 7W?) : 5a» . ,4“ W04 253% 3x / ‘ ’ Z/ a» 5" wflx A’ $6 ‘951X”qc}’ésin2w P “W” - “rm-- " ""~~5M2 {3y 5 r6651) 3/ . 7P“) : 343‘s W2 H r ~ “’J/r mfé‘uca>l¢ +egs’2, 3y 2K \ ‘ ..,..VAM~M___~_WM~_\ / E [Y =( ‘P‘. 2x 3x7 y) I‘ 4CZC +8 (Ssinlx+/Oa>$2y) NAME DIFFERENTIAL EQUATIONS Test 2A 4 problems— 25 points each Show all work for full credit! 1 (15 points) Compute the Wronskian for the set of three functions Ax Bx {1, e , e } where A and B are constants. (10 points) Determine the conditions on the constants A and B that will make the set linearly independent. 2 Use the characteristic polynomial to solve the differential equation: y" —z'y' +12y= 0 Note: coefficient is a complex constant. Also, (5 points) show y 2 e4“ is a solution by substituting into the differential equation. (Note: this problem has nothing to do with complex conjugates, that applies only if the coefficients are real.) 3 Solve using the method of undetermined coefficients: )1” —y' —2y=e3" sian 4 Solve using variation of parameters: ~2x y" —2y' —8y=3e ...
View Full Document

Page1 / 5

Differentable Equations Test 2A001 - +99 2 A T , a “’F...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online