{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture 3 - Lecture3 CyrilJinks, LearningObjectives...

Info icon This preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Lecture 3 Descriptive Statistics Descriptive Statistics
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Statistics in Business What tools might a stockbroker use  to evaluate investment options? Cyril Jinks, Bell Potter Securities
Image of page 2
Learning Objectives Distinguish  between measures of central  tendency, measures of variability, measures  of shape, and measures of association Understand the meanings of mean, median,  mode, quartile, percentile, and range Compute  mean, median, mode, percentile,  quartile, range, variance, standard deviation,  and mean absolute deviation on ungrouped  data Differentiate  between sample and population  variance and standard deviation
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Learning Objectives (cont’d) Understand the meaning of standard  deviation as it is applied by using the  empirical rule and Chebyshev’s theorem Understand box and whisker plots,  skewness, and kurtosis Compute  a coefficient of correlation and  interpret it
Image of page 4
Measures of Central  Tendency:  Ungrouped Data Measures of central tendency yield  information about the centre of a group of  numbers – e.g. a typical, middle, or average  value Common Measures of Central Tendency Mode Median Mean Percentiles Quartiles
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Mode   Applicable to all levels of data  measurement (nominal, ordinal,  interval, and ratio) Bimodal – Data sets that have two  modes Multimodal – Data sets that contain  more than two modes
Image of page 6
Mode - Example Offer prices for 20 Australian small capital floats  in 2004 ($) The most frequently occurring value is $1 0.40  0.80  1.00  1.00  1.00  1.00  1.00  1.20  1.20  1.25  1.35  1.50  1.80  1.85  1.90  2.00  2.10  2.30  2.40  2.50      Page 56   
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Median   Applicable for ordinal, interval, and ratio  data Not applicable for nominal data Unaffected by extremely large and  extremely small values
Image of page 8
Median   Computational Procedure  Arrange the observations in an ordered  array If there is an odd number of terms, the  median is the middle term of  the ordered  array If there is an even number of terms, the  median is the average of the middle two  terms The median’s position in an ordered array  is given by
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Median:  Example  with an Odd Number of Terms A business researcher wants to determine the median of the  following numbers 15 11 14 3 21 17 22 16 19 16 5 7 19 8 9 20 4 First, present these numbers as an ordered array 3 4 5 7 8 9 11 14 15 16 16 17 19 19 20 21 22
Image of page 10
Median:  Example with  an Even Number of Terms The value 22 has been eliminated from the dataset.  The  ordered array is 3 4 5 7 8 9 11 14 15 16 16 17 19 19 20 21
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Arithmetic Mean Commonly called ‘the mean’ Is the [             ] of a group of numbers
Image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern